EEE 324 Digital Signal Processing Lecture 10 Properties of z-Transform

Dr. Shadan Khattak
Department of Electrical Engineering
COMSATS Institute of Information Technology - Abbottabad

Contents

- z-transform properties

z-Transform Properties

1. Linearity
2. Time-shifting
3. Multiplication by an exponential sequence
4. Differentiation of $X(z)$
5. Conjugation of a complex sequence
6. Time Reversal
7. Convolution of Sequences
8. Initial Value Theorem

z-Transform Properties

- For the remaining lecture assume the following:

$$
x[n] \stackrel{Z}{\leftrightarrow} X(z), \quad R O C=R_{x}
$$

Here R_{x} represents a set of values of z such that $r_{R}<|z|<r_{L}$

- For two sequences, the z-transform pairs are:

$$
\begin{array}{ll}
x_{1}[n] \stackrel{Z}{\leftrightarrow} X_{1}(z), & R O C=R_{x_{1}} \\
x_{2}[n] \stackrel{Z}{\leftrightarrow} X_{2}(z), & R O C=R_{x_{2}}
\end{array}
$$

z-Transform Properties

1. Linearity

$$
a x_{1}[n]+b x_{2}[n] \stackrel{Z}{\leftrightarrow} a X_{1}(z)+b X_{2}(z), \quad \text { ROC contains } R_{x_{1}} \cap R_{x_{1}}
$$

- The case of pole-zero cancellation
- ROC may be larger than the overlap.
- E.g., when $x_{1}[n]$ and $x_{2}[n]$ are of infinite duration but the linear combination is of finite duration (ROC is the entire z-plane)
- The case of no pole-zero cancellation
- ROC will be exactly equal to the overlap of the individual ROCs.

z-Transform Properties

2. Time Shifting

$$
\begin{aligned}
& \quad x\left[n-n_{0}\right] \stackrel{Z}{\leftrightarrow} z^{-n_{0}} X(z) \\
& \text { ROC }=R_{x}(\text { except for the possible addition or deletion of } z \\
&=0 \text { or } z=\infty)
\end{aligned}
$$

- n_{0} is an integer
- When it is positive, the sequence $x[n]$ is shifted right
- When it is negative, the sequence $x[n]$ is shifted left.
- The ROC can change depending on the poles and zeros.
- This property is often useful for obtaining the inverse z-transform.

z-Transform Properties

2. Time Shifting

Example 3.14 (Shifted Exponential Sequence)

z-Transform Properties

3. Multiplication by an Exponential Sequence

$$
\begin{gathered}
z_{0}{ }^{n} x[n] \stackrel{Z}{\leftrightarrow} X\left(\frac{z}{z_{0}}\right) \\
R O C=\left|z_{0}\right| R_{x}
\end{gathered}
$$

- The ROC is R_{x} scaled by $\left|z_{0}\right|$
- If R_{x} is the set of values of z such that $r_{R}<|z|<r_{L}$,
- then $\left|z_{0}\right| R_{x}$ is the set of values of z such that $\left|z_{0}\right| r_{R}<|z|<r_{L}\left|z_{0}\right|$
- If $X(z)$ has a pole at $z=z_{1}$, then $X\left(z_{0}^{-1} z\right)$ will have a pole at $z=z_{0} z_{1}$.
- If z_{0} is a positive real number,
- The scaling can be interpreted as a shrinking or expanding of the z-plane i.e., the pole and zero locations change along radial lines in the z-plane.
- If z_{0} is complex with unity magnitude, so that $z_{0}=e^{j \omega_{0}}$, the scaling corresponds to a rotation in the z-plane by an angle of ω_{0} i.e., the pole and zero locations change in position along circles centred at the origin.
- Can be interpreted as a Frequency shift or translation, associated with modulation in time domain by complex exponential sequence $e^{j \omega_{0} n}$

z-Transform Properties

3. Multiplication by an Exponential Sequence

Example 3.15 (Exponential Multiplication)

z-Transform Properties

4. Differentiation of $X(z)$

$$
\begin{gathered}
n x[n] \stackrel{z}{\leftrightarrow}-z \frac{d}{d z} X(z) \\
R O C=R_{x}
\end{gathered}
$$

z-Transform Properties

4. Differentiation of $\boldsymbol{X}(\mathbf{z})$

Example 3.17 (Second order pole)

z-Transform Properties

5. Conjugation of a Complex Sequence

$$
\begin{gathered}
x^{*}[n] \stackrel{Z}{\leftrightarrow} X^{*}\left(z^{*}\right) \\
R O C=R_{x}
\end{gathered}
$$

z-Transform Properties

6. Time Reversal

$$
\begin{gathered}
x[-n] \stackrel{Z}{\leftrightarrow} X\left(\frac{1}{z}\right) \\
R O C=1 / R_{x}
\end{gathered}
$$

z-Transform Properties

6. Time Reversal

Example 3.18

z-Transform Properties

7. Convolution of Sequences

$$
\begin{gathered}
x_{1}[n] * x_{2}[n] \stackrel{Z}{\leftrightarrow} X_{1}(z) X_{2}(z) \\
R O C \text { contains } R_{x_{1}} \cap R_{x_{2}}
\end{gathered}
$$

- The z-transform of the O / P of an LTI system is the product of the z -transform of the I/P and the z-transform of the impulse response.
- The z-transform of the impulse response of an LTI system is typically referred to as the system function.

z-Transform Properties

7. Convolution of Sequences

Example 3.19 (Convolution using z-transform)

z-Transform Properties

8. Initial Value Theorem

If $x[n]$ is zero for $n<0$ (i.e., if $x[n]$ is causal), then

$$
x[0]=\lim _{z \rightarrow \infty} X(z)
$$

TABLE 3.2 SOME z-TRANSFORM PROPERTIES

Section Reference		Sequence	Transform

Suggested Reading

Section 3.4 (Oppenheim)

Practice Problems

Problems: 3.2, 3.8, 3.9

