

EEE 324 Digital Signal Processing Lecture 10 Properties of z-Transform

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Contents

• *z*-transform properties

- 1. Linearity
- 2. Time-shifting
- 3. Multiplication by an exponential sequence
- 4. Differentiation of X(z)
- 5. Conjugation of a complex sequence
- 6. Time Reversal
- 7. Convolution of Sequences
- 8. Initial Value Theorem

• For the remaining lecture assume the following: $x[n] \stackrel{Z}{\leftrightarrow} X(z), \quad ROC = R_x$

Here R_x represents a set of values of z such that $r_R < |z| < r_L$

• For two sequences, the *z*-transform pairs are:

$$\begin{array}{ll} x_1[n] \stackrel{Z}{\leftrightarrow} X_1(z), & ROC = R_{x_1} \\ x_2[n] \stackrel{Z}{\leftrightarrow} X_2(z), & ROC = R_{x_2} \end{array}$$

1. Linearity

 $ax_1[n] + bx_2[n] \stackrel{Z}{\leftrightarrow} aX_1(z) + bX_2(z), \quad ROC \text{ contains } R_{x_1} \cap R_{x_1}$

- The case of pole-zero cancellation
 - ROC may be larger than the overlap.
 - E.g., when $x_1[n]$ and $x_2[n]$ are of infinite duration but the linear combination is of finite duration (ROC is the entire z-plane)
- The case of no pole-zero cancellation
 - ROC will be exactly equal to the overlap of the individual ROCs.

2. Time Shifting

 $\begin{aligned} x[n-n_0] &\stackrel{Z}{\leftrightarrow} z^{-n_0} X(z) \\ ROC &= R_x (except for the possible addition or deletion of z \\ &= 0 \text{ or } z = \infty) \end{aligned}$

- n_0 is an integer
 - When it is positive, the sequence x[n] is shifted right
 - When it is negative, the sequence x[n] is shifted left.
- The ROC can change depending on the poles and zeros.
- This property is often useful for obtaining the inverse z-transform.

2. Time Shifting

Example 3.14 (Shifted Exponential Sequence)

3. Multiplication by an Exponential Sequence

$$z_0^n x[n] \stackrel{Z}{\leftrightarrow} X\left(\frac{z}{z_0}\right)$$
$$ROC = |z_0| R_x$$

- The ROC is R_x scaled by $|z_0|$
 - If R_x is the set of values of z such that $r_R < |z| < r_L$,
 - then $|z_0|R_x$ is the set of values of z such that $|z_0|r_R < |z| < r_L|z_0|$
- If X(z) has a pole at $z = z_1$, then $X(z_0^{-1}z)$ will have a pole at $z = z_0 z_1$.
- If z_0 is a positive real number,
 - The scaling can be interpreted as a shrinking or expanding of the z-plane i.e., the pole and zero locations change along radial lines in the z-plane.
- If z_0 is complex with unity magnitude, so that $z_0 = e^{j\omega_0}$, the scaling corresponds to a rotation in the z-plane by an angle of ω_0 i.e., the pole and zero locations change in position along circles centred at the origin.
 - Can be interpreted as a Frequency shift or translation, associated with modulation in time domain by complex exponential sequence $e^{j\omega_0 n}$

3. Multiplication by an Exponential Sequence

Example 3.15 (Exponential Multiplication)

4. Differentiation of X(z)

$$nx[n] \stackrel{Z}{\leftrightarrow} - z \frac{d}{dz} X(z)$$
$$ROC = R_x$$

4. Differentiation of X(z)

Example 3.17 (Second order pole)

5. Conjugation of a Complex Sequence $x^*[n] \stackrel{Z}{\leftrightarrow} X^*(z^*)$ $ROC = R_x$

6. Time Reversal

$$x[-n] \stackrel{Z}{\leftrightarrow} X\left(\frac{1}{z}\right)$$
$$ROC = 1/R_x$$

6. Time Reversal

Example 3.18

7. Convolution of Sequences

 $x_1[n] * x_2[n] \stackrel{Z}{\leftrightarrow} X_1(z)X_2(z)$ ROC contains $R_{x_1} \cap R_{x_2}$

- The z-transform of the O/P of an LTI system is the product of the z-transform of the I/P and the z-transform of the impulse response.
- The z-transform of the impulse response of an LTI system is typically referred to as the system function.

7. Convolution of Sequences

Example 3.19 (Convolution using z-transform)

8. Initial Value Theorem

If x[n] is zero for n < 0 (i.e., if x[n] is causal), then $x[0] = \lim_{z \to \infty} X(z)$

Section Reference	Sequence	Transform	ROC
	<i>x</i> [<i>n</i>]	X(z)	R _x
	$x_1[n]$	$X_1(z)$	R_{x_1}
	$x_2[n]$	$X_2(z)$	R_{x_2}
3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
3.4.4	nx[n]	$-z\frac{dX(z)}{dz}$	R_x , except for the possible addition or deletion of the origin or ∞
3.4.5	$x^*[n]$	$X^*(z^*)$	R_x
	$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
	$\mathcal{J}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
3.4.6	$x^{*}[-n]$	$X^{2}(1/z^{*})$	$1/R_x$
3.4.7	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
3.4.8	Initial-value theorem:		
	$x[n] = 0, n < 0 \qquad \lim_{z \to \infty} X(z) = x[0]$		

 TABLE 3.2
 SOME z-TRANSFORM PROPERTIES

Suggested Reading

Section 3.4 (Oppenheim)

Practice Problems

Problems: 3.2, 3.8, 3.9

COMSATS