

ECI750 Multimedia Data Compression

Lecture 11 Context-based Compression

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Dr. Shadan Khattak Department of Electrical Engineering CIIT - Abbottabad

12/10/2015

Examples of Context

- For the word "probability",
 - "b" is the first-order context for "a".
 - "*ob*" is the second-order context for "*a*".
- For an alphabet of size "M",
 - The number of first-order contexts is *M*.
 - The number of second-order contexts is M^2 .
- For an alphabet of size of 256 using contexts of order 5,
 - We will need 256^5 or 1.09951×10^{12} probability distributions.

Prediction with Partial Match (PPM)

- Proposed by Cleary and Witten in 1984.
- Not as popular as Lempel-Ziv-based algorithms, mainly because of the faster execution speeds of the latter.

Burrows-Wheeler Transform

- The transform, which forms a major part of the algorithm, was developed by Wheeler in 1983.
- The BWT compression algorithm, which uses this transform, was developed in 1994.
 - Requires that the entire sequence to be coded be available to the encoder before the coding takes place.

BWT Compression Algorithm

- Given a sequence of length N, create N-1 other sequences where each of these N-1 sequences is a cyclic shift of the original sequence.
- Arrange the N sequences in lexicographical order.
- Transmit the sequence of length N created by taking the last letter of each sorted, cyclically shifted sequence.
- This sequence of last letters L, and the positon of the original sequence in the sorted list, are coded and sent to the decoder.
 - This information is sufficient to recover the original sequence.

