

EEE 324 Digital Signal Processing

Lectures 11, 12

System Functions for Systems Characterized by LCCDE

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

COMSATS

Contents

- Introduction
- Frequency Response of LTI Systems
- System Functions for Systems Characterized by LCCDE

Introduction

• From the lecture on *z*-transform, we know that,

Y(z) = H(z)X(z)(1)

- In Eq. (1), H(z) is called the system function.
- Any LTID system is completely characterized by its system function, assuming convergence.
- Both the frequency response and the system function are extremely useful in the analysis and representation of LTI systems.

- The frequency response $H(e^{j\omega})$ of an LTI system is defined as the complex gain (eigenvalue) that the system applies to the complex exponential input (eigenfunction) $e^{j\omega n}$.
- We know that,

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega}) \qquad (2)$$

where

 $X(e^{j\omega})$: DTFT of the input sequence $Y(e^{j\omega})$: DTFT of the output sequence

- The magnitude and phase of the input and output sequences are related as: $\begin{aligned} |Y(e^{j\omega})| &= |H(e^{j\omega})| \cdot |X(e^{j\omega})| & (3a) \\ angle\left(Y(e^{j\omega})\right) &= angle\left(H(e^{j\omega})\right) + angle\left(X(e^{j\omega})\right) & (3b) \end{aligned}$
- $|H(e^{j\omega})|$ is called:
 - Magnitude response, or
 - Gain

of the system

- angle $(H(e^{j\omega}))$ is called:
 - Phase response, or
 - Phase shift
 - of the system

- The magnitude and phase effects in Eq. (3a) and Eq. (3b) can be either desirable or undesirable.
- In case they are undesirable, they are called the magnitude and phase distortions respectively.

Ideal Frequency Selective Filters

1. The Ideal Low Pass Filter (ILPF)

$$H_{lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$
(4)

- Selects the low-frequency components of the signal and rejects the high-frequency components.
- Using the formula of inverse DTFT, the impulse response of an ILPF is:

$$h_{lp}[n] = \frac{\sin\omega_c n}{\pi n}, \quad -\infty < n < \infty \tag{5}$$

$\underline{Ideal \ Frequency \ Selective \ Filters}} 2. \ \underline{The \ Ideal \ High \ Pass \ Filter \ (IHPF)}} H_{hp}(e^{j\omega}) = \begin{cases} 0, & |\omega| < \omega_c \\ 1, & \omega_c < |\omega| \le \pi \end{cases}$ (6)

Also,

$$H_{hp}(e^{j\omega}) = 1 - H_{lp}(e^{j\omega})$$

And,

$$h_{lp}[n] = \delta[n] - h_{lp}[n] = \delta[n] - \frac{\sin\omega_c n}{\pi n}$$
(7)

• The ILPF passes the frequency band $\omega_c < |\omega| \le \pi$ undistorted and rejects frequencies below ω_c .

Ideal Frequency Selective Filters

Issues:

- The ILPF is non-causal and its impulse response extends from -∞ to ∞.
- The ILPF is not computationally realizable.
- The phase response of an ILPF is 0.
- Later, we will see that causal approximations to ideal frequencyselective filters must have a non-zero phase response.

Phase Distortion and Delay

- For an ideal delay system $y[n] = x[n n_d]$,
 - the impulse response is: $h_{id}[n] = \delta[n n_d]$, and
 - the frequency response is: $H_{id}(e^{j\omega}) = e^{-j\omega n_d}$
 - the magnitude response is: $|H_{id}(e^{j\omega})| = 1$
 - the phase response is: $angle(H_{id}(e^{j\omega})) = -\omega n_d, \quad |\omega| < \pi$

Phase Distortion and Delay

- Generally, while designing systems, the aim is to have a linear phase response rather than a zero phase response.
- E.g., an ILPF with linear phase is defined as:

$$H_{lp}(e^{j\omega}) = \begin{cases} e^{-j\omega n_d}, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$
(8)
With an impulse response
$$h_{lp}[n] = \frac{\sin\omega_c(n-n_d)}{\pi(n-n_d)}, \quad -\infty < n < \infty$$
(9)

- These filters do two things:
 - Isolate a band of frequencies
 - Delay the output by n_d

Phase Distortion and Delay

Group Delay:

- Is a measure of linearity of the phase.
 - Relates to the effect of the phase on a narrowband signal. $angle\left(H(e^{j\omega})\right) \cong -\phi_0 - \omega n_d$ $\tau(\omega) = grd[H(e^{j\omega})] = -\frac{d}{d\omega} \{\arg[H(e^{j\omega})\}\}$
- The deviation of the group delay from a constant indicates the degree of nonlinearity of the phase.

Dr. Shadan Khattak Department of Electrical Engineering CIIT - Abbottabad

•

Phase Distortion and Delay

Group Delay:

Example 5.1 (Effects of Attenuation and Group Delay)

Phase Distortion and Delay

Group Delay:

Example 5.1 (Effects of Attenuation and Group Delay)

Three narrowband pulses: $\omega = 0.85\pi$, $\omega = 0.25\pi$, $\omega = 0.5\pi$

Phase Distortion and Delay

Group Delay:

Example 5.1 (Effects of Attenuation and Group Delay)

Three narrowband pulses: $\omega = 0.85\pi$, $\omega = 0.25\pi$, $\omega = 0.5\pi$

Phase Distortion and Delay

Group Delay:

Example 5.1 (Effects of Attenuation and Group Delay)

Phase Distortion and Delay

Group Delay:

Example 5.1 (Effects of Attenuation and Group Delay)

- While ideal FS filters are useful conceptually, they cannot be implemented with finite computations.
 - Therefore, we consider a class of systems that can be implemented as approximations to ideal FS filters.
- A class of systems whose i/p and o/p satisfy an LCCDE of the following form are important.

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
(10)

- If the auxiliary conditions correspond to initial rest, the system will be:
 - Causal
 - Linear
 - Time invariant

- The properties and characteristics of LTI systems for which the i/p and o/p satisfy an LCCDE are best developed through the z-transform.
- Applying the z-transform to both sides of Eq. (10), and using time shifting and linearity properties, we obtain,

$$\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)$$

or,

$$(\sum_{k=0}^{N} a_k z^{-k}) Y(z) = (\sum_{k=0}^{M} b_k z^{-k}) X(z) \quad (11)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
(12)

Or, in factored form,

$$H(z) = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}$$
(13)

- Each of the factor $(1 c_k z^{-1})$ contributes a zero at $z = c_k$ and a pole at z = 0.
- Each of the factor $(1 d_k z^{-1})$ contributes a pole at $z = d_k$ and a zero at z = 0.

Example 5.2 (Second Order System)

Transfer function to Difference Equation

Stability and Causality

- *Stability* implies that:
 - ROC must include the unit circle.
 - Impulse response must be absolutely summable.
- *Causality* implies that:
 - ROC must be outward of the outermost pole.
 - Impulse response must be right right-sided.
- For a system to be both stable and Causal,
 - All the poles of the system must lie within the unit circle.

Example 5.3 (Determining the ROC)

Inverse Systems

• A system with system function $H_i(z)$ such that if it is cascaded with H(z), the overall effective system function is unity; i.e.,

$$G(z) = H(z)H_i(z) = 1$$
(14)
It implies that

$$H_i(z) = \frac{1}{H(z)} (15)$$
The equivalent time-domain condition is:

$$g[n] = h[n] * h_i[n] = \delta[n] (16)$$
The frequency response of the inverse system, if it exists, is

$$H_i(e^{j\omega}) = \frac{1}{H(e^{j\omega})} (17)$$

Inverse Systems

- The log magnitude, phase, and group delay of the inverse system are negatives of the corresponding functions for the original system.
- Not all systems have an inverse. E.g.
 - The ILPF does not have an inverse.
- The class of systems with rational system functions is an example of systems which do have inverses.
- The poles of $H_i(z)$ are the zeros of H(z) and vice versa.
- What about the ROC of $H_i(z)$?
 - The ROC of H(z) and $H_i(z)$ must overlap.

Inverse Systems

- If H(z) is causal, its ROC is $|z| > \max_{k} |d_{k}|$
 - So, any appropriate ROC for $H_i(z)$ that overlaps with this region is a valid ROC for $H_i(z)$.

Inverse Systems

Example 5.4 (Inverse System for First-Order System):

Inverse Systems

Example 5.5 (Inverse For System with a Zero in the ROC)

Two valid inverse systems

Inverse Systems

Summary of Ex. 5.4, 5.5

- If H(z) is a causal system with zeros at c_k , k = 1, ..., M, then its inverse system will be causal if and only if we associate the ROC $|z| > \max_k |c_k|$ with $H_i(z)$.
- If we also require that the inverse system be stable, then the ROC of $H_i(z)$ must include the unit circle. Therefore, it must be true that

$$\max_{k} |c_k| < 1$$

- All the zeros of H(z) must be inside the unit circle.
- An LTI system is stable and causal and also has a stable and causal inverse if and only if both the poles and the zeros of H(z) are inside the unit circle.
- Such systems are called *minimum phase systems*.

Impulse Response for Rational System Functions

We know that for a system with only first order poles,

$$H(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$
(18)

If the system is assumed to be causal, then,

$$h[n] = \sum_{r=0}^{M-N} B_r \delta[n-r] + \sum_{k=1}^{N} A_k (d_k)^n u[n]$$

Impulse Response for Rational System Functions

Based on the nature of the impulse response, two important classes of LTI systems exist:

1. Infinite Impulse Response (IIR)

- 1. At least one non-zero pole of H(z) is not cancelled by a zero.
- 2. At least one term of the form $A_k(d_k)^n u[n]$
- 3. h[n] is not of finite length (i.e., it is not zero outside a finite interval.

Impulse Response for Rational System Functions

1. Infinite Impulse Response (IIR)

Example 5.6 (A First Order IIR System)

Impulse Response for Rational System Functions

- 2. Finite Impulse Response (FIR)
 - 1. H(z) has no poles except at z = 0; i.e., N = 0.
 - 2. A PFE is not possible.
 - 3. H(z) is simply a polynomial in z^{-1} of the form

$$H(z) = \sum_{k=0}^{M} b_k z^{-k}$$

4. We assume (without loss of generality) that $a_0 = 1$.

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k] = \begin{cases} b_n, & 0 \le n \le M \\ 0, & otherwise \end{cases}$$

5. The difference equation is identical to the convolution sum i.e.,

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Impulse Response for Rational System Functions

2. Finite Impulse Response (IIR)

Example 5.7 (A Simple FIR System)

