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Introduction 

• From the lecture on 𝑧-transform, we know that, 

𝑌 𝑧 = 𝐻 𝑧 𝑋(𝑧)  (1) 

• In Eq. (1), 𝐻(𝑧) is called the system function. 

• Any LTID system is completely characterized by its system function, 
assuming convergence. 

• Both the frequency response and the system function are extremely 
useful in the analysis and representation of LTI systems.  
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Frequency Response of LTI Systems 

• The frequency response 𝐻 𝑒𝑗𝜔  of an LTI system is defined as the 

complex gain (eigenvalue) that the system applies to the complex 
exponential input (eigenfunction) 𝑒𝑗𝜔𝑛. 

• We know that,  

𝑌 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑋 𝑒𝑗𝜔  (2) 

  where 

𝑋 𝑒𝑗𝜔 : DTFT of the input sequence 

𝑌 𝑒𝑗𝜔 : DTFT of the output sequence 
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Frequency Response of LTI Systems 

• The magnitude and phase of the input and output sequences are related as: 

𝑌 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 . 𝑋 𝑒𝑗𝜔      (3a) 

𝑎𝑛𝑔𝑙𝑒 𝑌 𝑒𝑗𝜔 = 𝑎𝑛𝑔𝑙𝑒 𝐻 𝑒𝑗𝜔 + 𝑎𝑛𝑔𝑙𝑒 𝑋 𝑒𝑗𝜔  (3b) 

• 𝐻 𝑒𝑗𝜔  is called: 
• Magnitude response, or  
• Gain 
of the system 

• 𝑎𝑛𝑔𝑙𝑒 𝐻 𝑒𝑗𝜔  is called: 
• Phase response, or 
• Phase shift 
of the system 
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Frequency Response of LTI Systems 

• The magnitude and phase effects in Eq. (3a) and Eq. (3b) can be either 
desirable or undesirable. 

• In case they are undesirable, they are called the magnitude and phase 
distortions respectively. 
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Frequency Response of LTI Systems 

Ideal Frequency Selective Filters 

1. The Ideal Low Pass Filter (ILPF) 

𝐻𝑙𝑝(𝑒
𝑗𝜔) =  

1,           𝜔 < 𝜔𝑐

0,    𝜔𝑐< 𝜔 ≤ 𝜋
  (4) 

• Selects the low-frequency components of the signal and rejects the high-
frequency components.  

• Using the formula of inverse DTFT, the impulse response of an ILPF is: 

ℎ𝑙𝑝[𝑛] =
𝑠𝑖𝑛𝜔𝑐𝑛

𝜋𝑛
,    −∞ < 𝑛 < ∞ (5) 
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Frequency Response of LTI Systems 

Ideal Frequency Selective Filters 

2. The Ideal High Pass Filter (IHPF) 

𝐻ℎ𝑝(𝑒
𝑗𝜔) =  

0,           𝜔 < 𝜔𝑐

1,    𝜔𝑐< 𝜔 ≤ 𝜋
  (6) 

Also, 
𝐻ℎ𝑝 𝑒𝑗𝜔 = 1 − 𝐻𝑙𝑝 𝑒𝑗𝜔  

And, 

ℎ𝑙𝑝 𝑛 = 𝛿 𝑛 − ℎ𝑙𝑝 𝑛 = 𝛿 𝑛 −
𝑠𝑖𝑛𝜔𝑐𝑛

𝜋𝑛
 (7) 

 
• The ILPF passes the frequency band 𝜔𝑐 < 𝜔 ≤ 𝜋 undistorted and rejects 

frequencies below 𝜔𝑐. 
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Frequency Response of LTI Systems 

Ideal Frequency Selective Filters 

Issues: 

• The ILPF is non-causal and its impulse response extends from −∞ to 
∞. 

• The ILPF is not computationally realizable. 

• The phase response of an ILPF is 0. 

• Later, we will see that causal approximations to ideal frequency-
selective filters must have a non-zero phase response. 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

• For an ideal delay system 𝑦 𝑛 = 𝑥[𝑛 − 𝑛𝑑],  
• the impulse response is: ℎ𝑖𝑑 𝑛 = 𝛿[𝑛 − 𝑛𝑑], and 

• the frequency response is: 𝐻𝑖𝑑 𝑒𝑗𝜔 = 𝑒−𝑗𝜔𝑛𝑑 

• the magnitude response is: 𝐻𝑖𝑑 𝑒𝑗𝜔 = 1 

• the phase response is: 𝑎𝑛𝑔𝑙𝑒 𝐻𝑖𝑑 𝑒𝑗𝜔 = −𝜔𝑛𝑑,     𝜔 < 𝜋 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

• Generally, while designing systems, the aim is to have a linear phase response rather than 
a zero phase response.  

• E.g., an ILPF with linear phase is defined as: 

𝐻𝑙𝑝(𝑒
𝑗𝜔) =  

𝑒−𝑗𝜔𝑛𝑑 ,           𝜔 < 𝜔𝑐

0,                  𝜔𝑐< 𝜔 ≤ 𝜋
 (8) 

With an impulse response 

ℎ𝑙𝑝[𝑛] =
𝑠𝑖𝑛𝜔𝑐(𝑛−𝑛𝑑)

𝜋(𝑛−𝑛𝑑)
,    −∞ < 𝑛 < ∞ (9) 

• These filters do two things: 

• Isolate a band of frequencies 

• Delay the output by 𝑛𝑑 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

Group Delay:  

• Is a measure of linearity of the phase. 

• Relates to the effect of the phase on a narrowband signal. 

𝑎𝑛𝑔𝑙𝑒 𝐻 𝑒𝑗𝜔 ≅ −∅0 −𝜔𝑛𝑑 

𝜏 𝜔 = 𝑔𝑟𝑑 𝐻 𝑒𝑗𝜔 = −
𝑑

𝑑𝜔
*arg 𝐻 𝑒𝑗𝜔  

• The deviation of the group delay from a constant indicates the degree 
of nonlinearity of the phase. 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

Group Delay:  

Example 5.1 (Effects of Attenuation and Group Delay) 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

Group Delay:  

Example 5.1 (Effects of Attenuation and Group Delay) 

 

 

 

 

 

Three narrowband pulses: 𝜔 = 0.85𝜋,𝜔 = 0.25𝜋,𝜔 = 0.5𝜋 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

Group Delay:  

Example 5.1 (Effects of Attenuation and Group Delay) 

 

 

 

 

 

Three narrowband pulses: 𝜔 = 0.85𝜋,𝜔 = 0.25𝜋,𝜔 = 0.5𝜋 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

Group Delay:  

Example 5.1 (Effects of Attenuation and Group Delay) 
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Frequency Response of LTI Systems 

Phase Distortion and Delay 

Group Delay:  

Example 5.1 (Effects of Attenuation and Group Delay) 
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System Functions for Systems Characterized by LCCDE 

• While ideal FS filters are useful conceptually, they cannot be implemented 
with finite computations. 

• Therefore, we consider a class of systems that can be implemented as approximations 
to ideal FS filters.  

• A class of systems whose i/p and o/p satisfy an LCCDE of the following 
form are important. 

 𝑎𝑘𝑦 𝑛 − 𝑘𝑁
𝑘=0 =  𝑏𝑘𝑥 𝑛 − 𝑘𝑀

𝑘=0   (10) 

• If the auxiliary conditions correspond to initial rest, the system will be: 
• Causal 
• Linear 
• Time invariant 
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System Functions for Systems Characterized by LCCDE 

• The properties and characteristics of LTI systems for which the i/p and 
o/p satisfy an LCCDE are best developed through the z-transform. 

• Applying the z-transform to both sides of Eq. (10), and using time 
shifting and linearity properties, we obtain, 

 𝑎𝑘𝑧
−𝑘𝑌(𝑧)

𝑁

𝑘=0
=  𝑏𝑘𝑧

−𝑘𝑋(𝑧)
𝑀

𝑘=0
 

or, 

( 𝑎𝑘𝑧
−𝑘)𝑌 𝑧𝑁

𝑘=0 = ( 𝑏𝑘𝑧
−𝑘)𝑋 𝑧𝑀

𝑘=0  (11) 
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System Functions for Systems Characterized by LCCDE 

𝐻 𝑧 =
𝑌 𝑧

𝑋 𝑧
=

 𝑏𝑘𝑧
−𝑘𝑀

𝑘=0

 𝑎𝑘𝑧
−𝑘𝑁

𝑘=0
  (12) 

Or, in factored form, 

𝐻 𝑧 =
𝑏0

𝑎0
 
 (1−𝑐𝑘𝑧

−1)𝑀
𝑘=1

 (1−𝑑𝑘𝑧
−1)𝑁

𝑘=1
  (13) 

• Each of the factor (1 − 𝑐𝑘𝑧
−1) contributes a zero at 𝑧 = 𝑐𝑘 and a pole 

at 𝑧 = 0. 

• Each of the factor (1 − 𝑑𝑘𝑧
−1) contributes a pole at 𝑧 = 𝑑𝑘 and a zero 

at 𝑧 = 0. 
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System Functions for Systems Characterized by LCCDE 

Example 5.2 (Second Order System) 

Transfer function to Difference Equation 
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System Functions for Systems Characterized by LCCDE 

Stability and Causality 

• Stability implies that: 

• ROC must include the unit circle. 

• Impulse response must be absolutely summable. 

• Causality implies that: 

• ROC must be outward of the outermost pole. 

• Impulse response must be right right-sided. 

• For a system to be both stable and Causal, 

• All the poles of the system must lie within the unit circle. 
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System Functions for Systems Characterized by LCCDE 

Example 5.3 (Determining the ROC) 
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System Functions for Systems Characterized by LCCDE 

Inverse Systems 

• A system with system function 𝐻𝑖(𝑧) such that if it is cascaded with 𝐻 𝑧 , the 
overall effective system function is unity; i.e.,  

𝐺 𝑧 = 𝐻 𝑧 𝐻𝑖 𝑧 = 1  (14) 

It implies that 

𝐻𝑖 𝑧 =
1

𝐻 𝑧
 (15) 

The equivalent time-domain condition is: 

𝑔 𝑛 = ℎ 𝑛 ∗ ℎ𝑖 𝑛 = 𝛿[𝑛] (16) 

The frequency response of the inverse system, if it exists, is 

𝐻𝑖 𝑒𝑗𝜔 =
1

𝐻 𝑒𝑗𝜔
  (17) 
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System Functions for Systems Characterized by LCCDE 

Inverse Systems 

• The log magnitude, phase, and group delay of the inverse system are 
negatives of the corresponding functions for the original system. 

• Not all systems have an inverse. E.g. 
• The ILPF does not have an inverse.  

• The class of systems with rational system functions is an example of 
systems which do have inverses.  

• The poles of 𝐻𝑖 𝑧  are the zeros of 𝐻(𝑧) and vice versa. 

• What about the ROC of 𝐻𝑖 𝑧 ? 
• The ROC of 𝐻 𝑧  and 𝐻𝑖 𝑧  must overlap.  
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System Functions for Systems Characterized by LCCDE 

Inverse Systems 

• If 𝐻(𝑧) is causal, its ROC is 𝑧 > max
𝑘

𝑑𝑘  

• So, any appropriate ROC for 𝐻𝑖 𝑧  that overlaps with this region is a valid 
ROC for 𝐻𝑖 𝑧 .  
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System Functions for Systems Characterized by LCCDE 

Inverse Systems 

Example 5.4 (Inverse System for First-Order System): 
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System Functions for Systems Characterized by LCCDE 

Inverse Systems 

Example 5.5 (Inverse For System with a Zero in the ROC) 

Two valid inverse systems 
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System Functions for Systems Characterized by LCCDE 

Inverse Systems 

Summary of Ex. 5.4, 5.5 

• If 𝐻(𝑧) is a causal system with zeros at 𝑐𝑘 , 𝑘 = 1,… ,𝑀, then its inverse 
system will be causal if and only if we associate the ROC 𝑧 > max

𝑘
𝑐𝑘  

with 𝐻𝑖(𝑧). 
• If we also require that the inverse system be stable, then the ROC of 𝐻𝑖(𝑧) 

must include the unit circle. Therefore, it must be true that  
max
𝑘

𝑐𝑘 < 1 

• All the zeros of 𝐻(𝑧) must be inside the unit circle. 
• An LTI system is stable and causal and also has a stable and causal inverse if and only 

if both the poles and the zeros of 𝐻(𝑧) are inside the unit circle.  
• Such systems are called minimum phase systems.  
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System Functions for Systems Characterized by LCCDE 

Impulse Response for Rational System Functions 

We know that for a system with only first order poles, 

𝐻 𝑧 =  𝐵𝑟𝑧
−𝑟𝑀−𝑁

𝑟=0 +  
𝐴𝑘

1−𝑑𝑘𝑧
−1

𝑁
𝑘=1   (18) 

If the system is assumed to be causal, then, 

ℎ 𝑛 =  𝐵𝑟𝛿 𝑛 − 𝑟 +  𝐴𝑘(𝑑𝑘)
𝑛

𝑁

𝑘=1

𝑀−𝑁

𝑟=0

𝑢[𝑛] 
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System Functions for Systems Characterized by LCCDE 

Impulse Response for Rational System Functions 

Based on the nature of the impulse response, two important classes of 
LTI systems exist: 

1. Infinite Impulse Response (IIR) 

1. At least one non-zero pole of 𝐻 𝑧  is not cancelled by a zero. 

2. At least one term of the form 𝐴𝑘(𝑑𝑘)
𝑛𝑢[𝑛]  

3. h[n] is not of finite length (i.e., it is not zero outside a finite interval.  
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System Functions for Systems Characterized by LCCDE 

Impulse Response for Rational System Functions 

1. Infinite Impulse Response (IIR) 

Example 5.6 (A First Order IIR System) 
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System Functions for Systems Characterized by LCCDE 

Impulse Response for Rational System Functions 

2. Finite Impulse Response (FIR) 
1. 𝐻 𝑧  has no poles except at 𝑧 = 0; i.e., 𝑁 = 0. 
2. A PFE is not possible. 
3. 𝐻(𝑧) is simply a polynomial in 𝑧−1 of the form 

𝐻 𝑧 =  𝑏𝑘𝑧
−𝑘

𝑀

𝑘=0
 

4. We assume (without loss of generality) that 𝑎0 = 1. 

ℎ 𝑛 =  𝑏𝑘𝛿
𝑀

𝑘=0
𝑛 − 𝑘 =  

𝑏𝑛,    0 ≤ 𝑛 ≤ 𝑀
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

5. The difference equation is identical to the convolution sum i.e.,  

𝑦 𝑛 =  𝑏𝑘𝑥[𝑛 − 𝑘]
𝑀

𝑘=0
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System Functions for Systems Characterized by LCCDE 

Impulse Response for Rational System Functions 

2. Finite Impulse Response (IIR) 

Example 5.7 (A Simple FIR System) 
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