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Relationship Between Magnitude and Phase 

• Generally, knowledge about the magnitude provides no information about 
the phase, and vice versa. 

• But, for systems described by LCCDE (i.e., Rational System Functions), 
there exists some constraints between magnitude and phase. 

1. If MR and the number of poles and zeros are known, then there are only a 
finite number of choices for the PR. Also, 

2. If PR and the number of poles and zeros are known, then, to within a 
scale factor, there are only a finite number of choices for the MR.  

3. Under the minimum phase constraint, the MR specifies the phase 
uniquely and the PR specifies the magnitude to within a scale factor. 
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Relationship Between Magnitude and Phase 
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Hence, square of the magnitude of the FR is evaluation on the unit circle of the z-transform 

𝐶 𝑧 = 𝐻 𝑧 𝐻∗
1

𝑧∗
 

𝐶 𝑧 =
𝑏0

𝑎0

2

 
 (1 − 𝑐𝑘𝑧−1)(1 − 𝑐𝑘

∗𝑧 )𝑀
𝑘=1

 (1 − 𝑑𝑘𝑧−1)(1 − 𝑑𝑘
∗𝑧 )𝑁

𝑘=1

 

  

Dr. Shadan Khattak 

Department of Electrical Engineering 

CIIT - Abbottabad 

 



Relationship Between Magnitude and Phase 

• If we are given 𝐻(𝑒𝑗𝜔)
2
, then by replacing 𝑒𝑗𝜔 by 𝑧, we can construct 

𝐶(𝑧).  

• What information can 𝐶(𝑧) give us about 𝐻(𝑧)? 

• For each pole 𝑑𝑘 of 𝐻(𝑧), there is a pole of 𝐶(𝑧) at 𝑑𝑘 and (𝑑𝑘
∗
 )−1. 

• Similarly, for each zero 𝑐𝑘 , there is a zero of 𝐶(𝑧) at 𝑐𝑘 and (𝑐𝑘
∗
 )−1. 

• So, the poles and zeros of 𝐶(𝑧) occur in conjugate reciprocal pairs with one element 
of each pair associated with 𝐻 𝑧  and one element of each pair associated with 

𝐻∗ 1

𝑧∗ . 

• If one element of each pair is inside the unit circle, then the other will be outside the 
unit circle. 

• Another alternative is that both the elements lie on the unit circle in the same location.  
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Relationship Between Magnitude and Phase 

• If 𝐻 𝑧  is assumed to be causal and stable,  

• All poles must lie inside the unit circle. 

• Poles of 𝐻(𝑧) can be identified from the poles of 𝐶 𝑧 . 

• With this constraint alone, Zeros of 𝐻 𝑧  cannot be uniquely identified from 
zeros of 𝐶 𝑧 . 
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Relationship Between Magnitude and Phase 

Example 5.11 (Systems with the same 𝑪(𝒛)) 

Same magnitude squared response 

Different phase responses 
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Relationship Between Magnitude and Phase 

Example 5.12 
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All Pass Systems 

• A stable system function of the form 

𝐻𝑎𝑝 𝑧 =
𝑧−1−𝑎∗

1−𝑎𝑧−1 (1) 

 has a MR that is independent of 𝜔. This can be seen by writing 𝐻𝑎𝑝 𝑒𝑗𝜔  in the 
 form 

𝐻𝑎𝑝 𝑒𝑗𝜔 =
𝑒−𝑗𝜔 − 𝑎∗

1 − 𝑎𝑒−𝑗𝜔
 

= 𝑒−𝑗𝜔
1 − 𝑎∗𝑒𝑗𝜔

1 − 𝑎𝑒−𝑗𝜔
 

• The term 𝑒−𝑗𝜔 has unity magnitude. 

• For the term 
1−𝑎∗𝑒𝑗𝜔

1−𝑎𝑒−𝑗𝜔 , the numerator and denominator are complex conjugates of each 
other and hence have the same magnitude. So 

𝐻𝑎𝑝 𝑒𝑗𝜔 = 1 
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All Pass Systems 

• A system for which the MR is constant is called an all pass system (APS).  
• Because the system passes all of the frequency components of its input with constant 

gain or attenuation. 

• The most general form of the system function of an APS with a real valued 
IR is a product of factors like Eq. (1), with complex poles being paired with 
their conjugates. 

𝐻𝑎𝑝 𝑧 = 𝐴  
𝑧−1 − 𝑑𝑘

1 − 𝑑𝑘𝑧−1

𝑀𝑟

𝑘=1

 
(𝑧−1 − 𝑒𝑘

∗)(𝑧−1 − 𝑒𝑘)

(1 − 𝑒𝑘𝑧−1)(1 − 𝑒𝑘
∗
𝑧−1)

𝑀𝑐

𝑘=1

 

A is a positive constant 

𝑑𝑘𝑠 are the real poles 

𝑒𝑘𝑠 are the complex poles 
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All Pass Systems 

• For causal and stable APS,  

𝑑𝑘 < 1 and 𝑒𝑘 < 1 

• APS have 𝑀 = 𝑁 = 2𝑀𝑐 + 𝑀𝑟 

• In this figure,  

𝑀𝑟 = 2 and 𝑀𝑐 = 1 

• Note that each pole is paired with a 
conjugate reciprocal zero. 
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All Pass Systems 

• The FR of a general APS can be expressed in terms of the FR of first 
order APSs. 

• For a causal APS, each of the first order terms consist of a pole inside 
the unit circle and a zero at the conjugate reciprocal location. 

• The MR of such a term is 1. 

• And hence, the log magnitude in dB is 0. 
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All Pass Systems 

• The Phase function of a first order APS is 

𝑎𝑛𝑔𝑙𝑒
𝑒−𝑗𝜔 − 𝑟𝑒−𝑗𝜃

1 − 𝑟𝑒𝑗𝜃𝑒−𝑗𝜔
= −𝜔 − 2 arctan

𝑟𝑠𝑖𝑛 𝜔 − 𝜃

1 − 𝑟𝑐𝑜𝑠 𝜔 − 𝜃
 

• The Phase function of a second order APS with poles at 𝑧 = 𝑟𝑒𝑗𝜃 and 
𝑧 = 𝑟𝑒−𝑗𝜃 is 

𝑎𝑛𝑔𝑙𝑒
(𝑒−𝑗𝜔−𝑟𝑒−𝑗𝜃)(𝑒−𝑗𝜔−𝑟𝑒𝑗𝜃)

(1 − 𝑟𝑒𝑗𝜃𝑒−𝑗𝜔)(1 − 𝑟𝑒−𝑗𝜃𝑒−𝑗𝜔)
= −2𝜔 − 2 arctan

𝑟𝑠𝑖𝑛 𝜔 − 𝜃

1 − 𝑟𝑐𝑜𝑠 𝜔 − 𝜃
− 2 arctan

𝑟𝑠𝑖𝑛 𝜔 + 𝜃

1 − 𝑟𝑐𝑜𝑠 𝜔 + 𝜃
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All Pass Systems 

Example 5.13 (First and Second Order APS 

First Order 
Note: when r>1, the zero causes a negative slope around 𝜔 = 𝜃 and when r<1, the pole causes a negative slope around 𝜔 = 𝜃  
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All Pass Systems 

Example 5.13 (First and Second Order APS 

(Second Order) 
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All Pass Systems 

Example 5.13 (First and Second Order APS 

(Third Order) 

 

 

 

 

         (Log Mag. not shown) 
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All Pass Systems 

Example 5.13 (First and Second Order APS 

• General Properties of all causal APS: 

1. Continuous phase of a causal APS is always non-positive for 
0 < 𝜔 < 𝜋 . For example, 

a) Phase is non-positive for 0 < 𝜔 < 𝜋 (See Fig. 5.22(b)) 

b) In Fig. 5.23(b), if the discontinuity of 2𝜋 resulting from the computation of the 
principal value is removed, the resulting continuous phase curve is non-
positive for 0 < 𝜔 < 𝜋  
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All Pass Systems 

Example 5.13 (First and Second Order APS 

• General Properties of all causal APS: 

2. For a causal and stable APS with 𝑟 < 1, the GD contributed by a 
single causal APS factor is always positive.  

3. Since the GD of a higher order APS will be a sum of positive terms, it 
is generally true that GD of a causal rational APS is always positive 
(E.g., Fig. 5.22(c), Fig. 5.23(c), Fig. 5.24(c). 
• The positivity of the GD of a causal APS is the basis for a simple proof of the 

negativity of the phase of such a system. 

• The positivity of the GD and the non-positivity of the continuous phase are 
important properties of APS.  
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All Pass Systems 

Uses of APS 

1. They can be used as compensators for phase (or GD) distortion. 

2. They are useful in the theory of minimum phase systems (MPS). 

3. They are useful in transforming frequency selective LPF into other 
frequency selective forms. 

4. They are useful in obtaining variable cut-off frequency selective 
filters.  

5. These applications are discussed in detail in Chapter 7. 
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