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Linear Systems with Generalized Linear Phase 

• For frequency selective filters, it is desirable to have 
• Constant MR at the band of interest. 

• Zero phase at the band of interest. 

• For causal systems, zero phase is not achievable. 

• Hence, some phase distortion must be allowed. 

• The effect of linear phase with integer slope is a simple time shift. 

• A non-linear phase can have a major effect on the shape of a signal even when the MR is constant.  

• Hence, it is particularly desirable to design systems to have exactly or approximately linear phase. 

• A filter needs linear phase to in order to properly shift every cosine by the same amount. 

• This constraint is stricter than what we actually need for most filters. 

• In this lecture, we consider formalization and generalization of the notions of linear phase and ideal 
time delay by considering the class of systems that have constant group delay.  
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

• Consider an LTI system whose FR over one period is 

𝐻𝑖𝑑 𝑒𝑗𝜔 = 𝑒−𝑗𝜔𝛼,  𝜔 < 𝜋 (1) 

Where 𝛼 is a real number (not necessarily integer) 

• Such a system is an ideal delay system with a delay of 𝛼. 

• This type of system has: 
• Constant MR  ( 𝐻𝑖𝑑 𝑒𝑗𝜔 = 1  ) 

• Linear PR  ( 𝑎𝑛𝑔𝑙𝑒 𝐻𝑖𝑑 𝑒𝑗𝜔 = −𝜔𝛼 ) 

• Constant GD  ( 𝑔𝑟𝑑 𝐻𝑖𝑑 𝑒𝑗𝜔 = 𝛼  ) 
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

The inverse FT of 𝐻𝑖𝑑 𝑒𝑗𝜔  is the impulse response 

𝑕𝑖𝑑 𝑛 =
𝑠𝑖𝑛𝜋 𝑛−𝛼

𝜋 𝑛−𝛼
, −∞ < 𝑛 < ∞ 

The O/P of this system for an I/P 𝑥[𝑛] is 

𝑦 𝑛 = 𝑥 𝑛 ∗
𝑠𝑖𝑛𝜋 𝑛 − 𝛼

𝜋 𝑛 − 𝛼
=  𝑥[𝑘]

𝑠𝑖𝑛𝜋 𝑛 − 𝑘 − 𝛼

𝜋 𝑛 − 𝑘 − 𝛼

∞

𝑘=−∞
 

If 𝛼 = 𝑛𝑑 is an integer, then 

𝑕𝑖𝑑 𝑛 = 𝛿[𝑛 − 𝑛𝑑] and 
𝑦 𝑛 = 𝑥 𝑛 ∗ 𝛿 𝑛 − 𝑛𝑑 = 𝑥[𝑛 − 𝑛𝑑] 
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

• If the GD 𝛼 is positive,  

• The time shift is a time delay. 

• If the GD 𝛼 is negative,  

• The time shift is a time advance. 
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

Representation of an LP LTI system as a cascade of a magnitude filter and time shift. 

 

 

 

𝐻 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑒−𝑗𝜔𝛼 (2) 

• The signal 𝑥[𝑛] is filtered by the zero phase FR 𝐻 𝑒𝑗𝜔  and the 

filtered output is then time-shifted by the amount 𝛼. 
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

Representation of an LP LTI system as a cascade of a magnitude filter and time shift. 

If 𝐻 𝑒𝑗𝜔  is a linear phase ideal low pass filter,  

𝐻𝑙𝑝 𝑒𝑗𝜔 =  
𝑒−𝑗𝜔𝛼 ,    𝜔 < 𝜔𝑐

0,              𝜔𝑐< 𝜔 ≤ 𝜋
 

The corresponding impulse response is 

𝑕𝑙𝑝 𝑛 =
𝑠𝑖𝑛𝜔𝑐 𝑛 − 𝛼

𝜋 𝑛 − 𝛼
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

Example 5.16 (Ideal Low Pass with Linear Phase) 

𝜔𝑐 = 0.4𝜋 
𝛼 = 𝑛𝑑 = 5 

When 𝛼 is an integer, the IR is symmetric 
about 𝑛 = 𝑛𝑑 

𝑕𝑙𝑝 2𝑛𝑑 − 𝑛 =
𝑠𝑖𝑛𝜔𝑐 2𝑛𝑑 − 𝑛 − 𝑛𝑑
𝜋 2𝑛𝑑 − 𝑛 − 𝑛𝑑

 

=
𝑠𝑖𝑛𝜔𝑐 𝑛𝑑 − 𝑛

𝜋 𝑛𝑑 − 𝑛
 

= 𝑕𝑙𝑝 𝑛  
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

Example 5.16 (Ideal Low Pass with Linear Phase) 

𝜔𝑐 = 0.4𝜋 
𝛼 = 𝑛𝑑 = 4.5 

Symmetry around 𝛼 = 𝑛𝑑 = 4.5 which is 
a non-integer. 

If 2𝛼 is an integer, then 𝑕𝑙𝑝 2𝛼 − 𝑛 =
𝑕𝑙𝑝 𝑛  
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

Example 5.16 (Ideal Low Pass with Linear Phase) 

𝜔𝑐 = 0.4𝜋 
𝛼 = 𝑛𝑑 = 4.3 

No symmetry at all 
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Linear Systems with Generalized Linear Phase 

Systems with Linear Phase 

In general, an LPS has FR 

𝐻 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑒−𝑗𝜔𝛼 (2) 

• If 2𝛼 is an integer (i.e., if 𝛼 is an integer or an integer plus one-half), 
the corresponding IR has even symmetry about 𝛼 i.e., 

𝑕 2𝛼 − 𝑛 = 𝑕[𝑛] 

• If 2𝛼 is not an integer, then the IR will not have even symmetry, but it 
will still have linear phase and constant GD. 
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Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

• We don’t always need linear filters.  

• In the earlier discussion on LPS, we discussed a class of systems 
whose FR is of the form of Eq. (2) i.e., 

• A real valued non-negative function of 𝜔 multiplied by a linear phase term 
𝑒−𝑗𝜔𝛼. 

• It is possible to generalize the definition of linear phase. 
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Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

• A system is called a generalized linear phase system if its FR can be 
expressed in the form 

𝐻 𝑒𝑗𝜔 = 𝐴(𝑒𝑗𝜔)𝑒−𝑗𝛼𝜔+𝑗𝛽 (3) 

where 𝛼 and 𝛽 are constants and 𝐴(𝑒𝑗𝜔) is a real (possibly bipolar) function 
of 𝜔. 

• For such systems, the phase consists of constant terms added to the linear 
function −𝜔𝛼 i.e., −𝜔𝛼 + 𝛽 is the equation of a straight line. 

• If we ignore the discontinuities that result from the addition of constant 
phase over all or part of the band 𝜔 < 𝜋,  

• Then the system can be characterized by constant GD.  
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Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

• Hence, the class of systems such that 

𝜏 𝜔 = 𝑔𝑟𝑑 𝐻 𝑒𝑗𝜔 = −
𝑑

𝑑𝜔
arg 𝐻 𝑒𝑗𝜔 = 𝛼  

Have linear phase of the more general form  

arg 𝐻 𝑒𝑗𝜔 = 𝛽 − 𝜔𝛼 

Where 𝛽 and 𝛼 are both real constants. 
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Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

• Earlier, we noted that the IR of LP systems may have symmetry about 
𝛼 if 2𝛼 is an integer. 

• For systems with GLP, 

𝐻 𝑒𝑗𝜔 = 𝐴 𝑒𝑗𝜔 𝑒𝑗(𝛽−𝛼𝜔) 

Necessary (but not sufficient) condition for the system to have constant 
delay: 

 𝑕 𝑛 sin 𝜔 𝑛 − 𝛼 + 𝛽 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔∞
𝑛=−∞  (4) 
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Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

E.g.,  

One set of conditions that satisfies Eq. (4) is:  

• 𝛽 = 0 or 𝜋 

• 2𝛼 = 𝑀 = 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

• 𝑕 2𝛼 − 𝑛 = 𝑕[𝑛] (5) 

⇒ 𝐴(𝑒𝑗𝜔) is an even function of 𝜔 

 

 
Dr. Shadan Khattak 

Department of Electrical Engineering 

CIIT - Abbottabad 

 



Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

Another set of conditions that satisfies Eq. (4) is:  

• 𝛽 = 3𝜋/2 or 𝜋/2 

• 2𝛼 = 𝑀 = 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

• 𝑕 2𝛼 − 𝑛 = −𝑕[𝑛] (6) 

⇒ 𝐴(𝑒𝑗𝜔) is an odd function of 𝜔 
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Linear Systems with Generalized Linear Phase 

Generalized Linear Phase 

• These two set of conditions, guarantee GLP or CGD, but there are 
other systems that also satisfy Eq. (3) without these symmetry 
conditions. 
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