

EEE 324 Digital Signal Processing Lecture 1

Periodic Sampling, Frequency Domain Representation of Sampling

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Contents

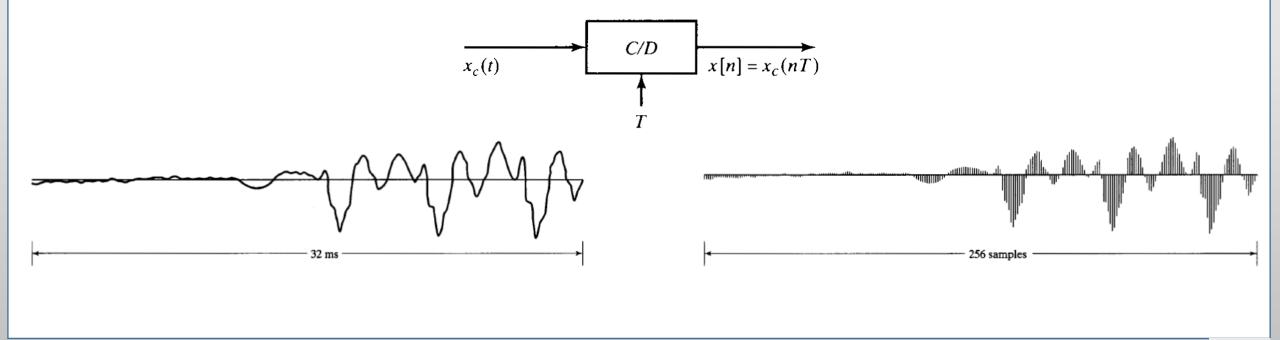
- 1. Periodic Sampling
- 2. Frequency Domain Representation of Sampling

 A DT sequence x[n] is obtained from a CT signal x_c(t) according to the relation:

$$\begin{aligned} x[n] &= x_c(nT) \qquad -\infty < n < \infty \end{aligned} \tag{1} \\ T: sampling period \\ \frac{1}{T} &= f_s: sampling \ frequency \ (samples/sec.) \\ \Omega_s &= \frac{2\pi}{T}: sampling \ frequency \ (radians/sec.) \end{aligned}$$

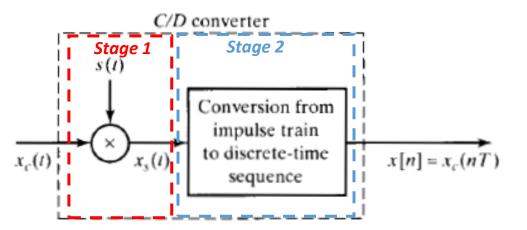
An ideal Continuous-to-Discrete (C/D) converter

• A system which implements Eq. (1).

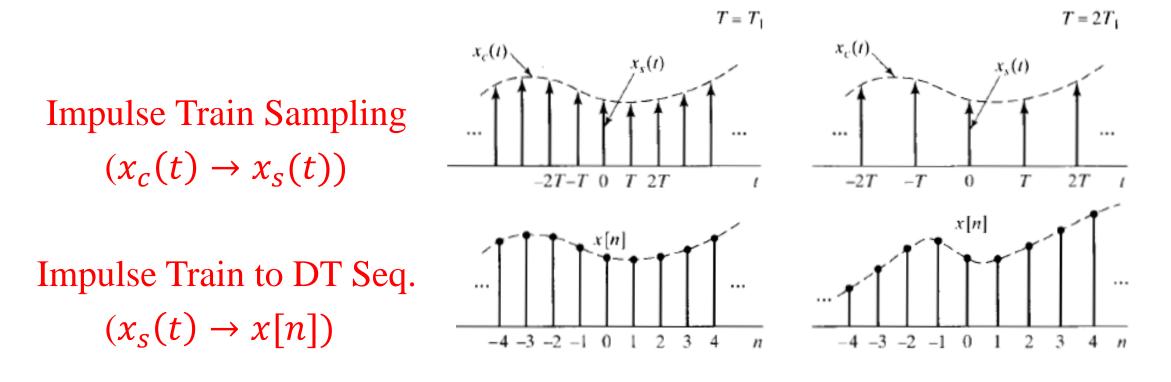


- Practically, sampling is achieved using Analog-to-Digital (A/D) converter.
- Similar to C/D converter but also includes quantization.

- Sampling is, generally, not invertible.
- Mathematically, sampling can be understood as a two-stage process:
- Stage 1: Impulse train modulation
- Stage 2: Conversion of the impulse train to a sequence



Sampling using two different sampling rates



Difference between $x_s(t)$ and x[n]

- $x_s(t)$ is CT while x[n] is DT.
- $x_s(t)$ includes time information while x[n] does not.
- The samples of $x_s(t)$ are represented as the areas of impulses while those of x[n] are finite numbers.

• In the next few slides, we will see how we can obtain $x_s(t)$ from $x_c(t)$. <u>Conversion from $x_c(t)$ to $x_s(t)$ </u>

The original CT signal: The CT impulse train: Result of modulation:

i.e.,

al:
$$x_c(t)$$

 $x_c(t) = \sum_{-\infty}^{\infty} \delta(t - nT)$
 $x_s(t) = x_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$
 $x_c(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$
Using the sifting property of the impulse
i.e., $\phi(t) \delta(t - t_0) = \phi(t_0) \delta(t - t_0)$
 $x_s(t) = \sum_{-\infty}^{\infty} x_c(nT) \delta(t - nT)$ (3)

 $\frac{\text{Conversion from } x_c(t) \text{ to } x_s(t)}{\text{CTFT of } x_s(t) = X_s(j\Omega)}$ $\text{CTFT of } x_c(t) = X_c(j\Omega)$ $\text{CTFT of } s(t) = S(j\Omega)$

The CTFT of a periodic impulse train is a periodic impulse train i.e.,

$$\sum_{n=-\infty}^{\infty} \delta(t-nT) \stackrel{CTFT}{\longleftrightarrow} \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{T})$$

So,

$$S(j\Omega) = \frac{2\pi}{T} \sum_{-\infty}^{\infty} \delta(\Omega - k\Omega_s)$$
 (4)

COMSATS

Conversion from $x_c(t)$ to $x_s(t)$

Since

$$x_{s}(t) = x_{c}(t)s(t),$$

$$X_{s}(j\Omega) = \frac{1}{2\pi}X_{c}(j\Omega) * S(j\Omega)$$

$$\overline{X_{s}(j\Omega)} = \frac{1}{T}\sum_{k=-\infty}^{\infty}X_{c}(j(\Omega - k\Omega_{s}))$$
(5)

Eq. (5) shows the relationship between the FT of the input and output of Stage 1.

- FT of the output consists of periodically repeated copies of the FT of the input.
- Each copy is shifted by integer multiples of the sampling frequency and then superimposed on each other.

Conversion from $x_c(t)$ to $x_s(t)$

Example:

Case 1: $\Omega_s > 2\Omega_N$

 \Rightarrow The replicas of $X_c(j\Omega)$ do not overlap

⇒ When the replicas of $X_c(j\Omega)$ are added together, there remains (within a scale factor of 1/T) a replica of $X_c(j\Omega)$ at each integer multiple of Ω_s .

 $\Rightarrow x_c(t)$ can be recovered from $x_s(t)$ with an ideal low pass filter.

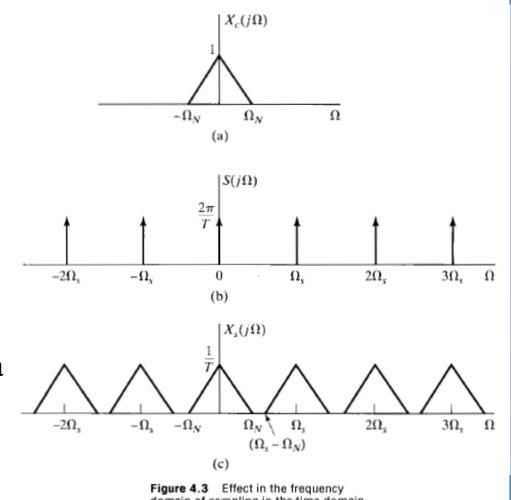


Figure 4.3 Effect in the frequency domain of sampling in the time domain. (a) Spectrum of the original signal. (b) Spectrum of the sampling function. (c) Spectrum of the sampled signal with $\Omega_s > 2\Omega_N$. (d) Spectrum of the sampled signal with $\Omega_s < 2\Omega_N$.

Conversion from $x_c(t)$ to $x_s(t)$

Example:

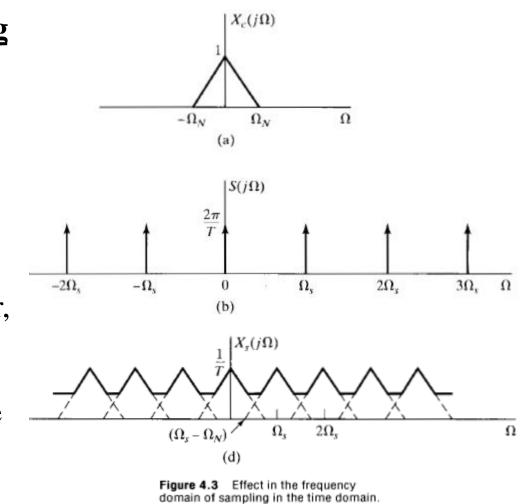
Case 2: $\Omega_s < 2\Omega_N$

 \Rightarrow The replicas of $X_c(j\Omega)$ overlap

⇒ When the replicas of $X_c(j\Omega)$ are added together, $X_c(j\Omega)$ is no longer recoverable by an ideal low pass filter.

 \Rightarrow The reconstructed signal $x_r(t)$ is an alias of the original signal $x_c(t)$.

 \Rightarrow There exists aliasing distortion between $x_r(t)$ and $x_c(t)$.



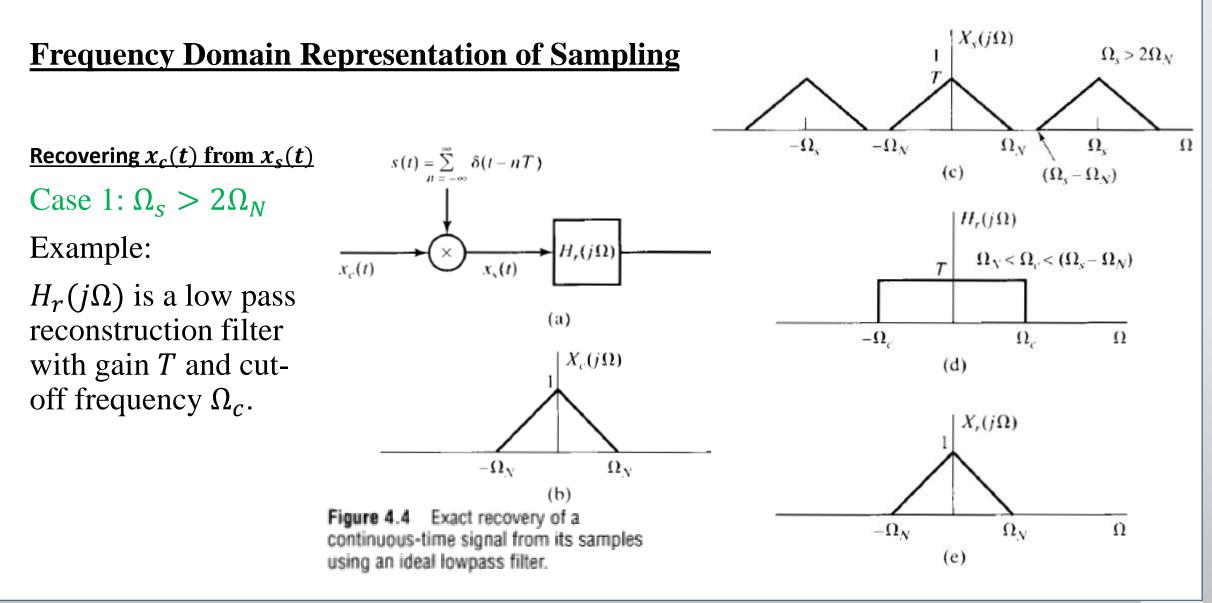
(a) Spectrum of the original signal.
(b) Spectrum of the sampling function.

(c) Spectrum of the sampled signal with

 $\Omega_s > 2\Omega_N$. (d) Spectrum of the sampled signal with $\Omega_s < 2\Omega_N$.

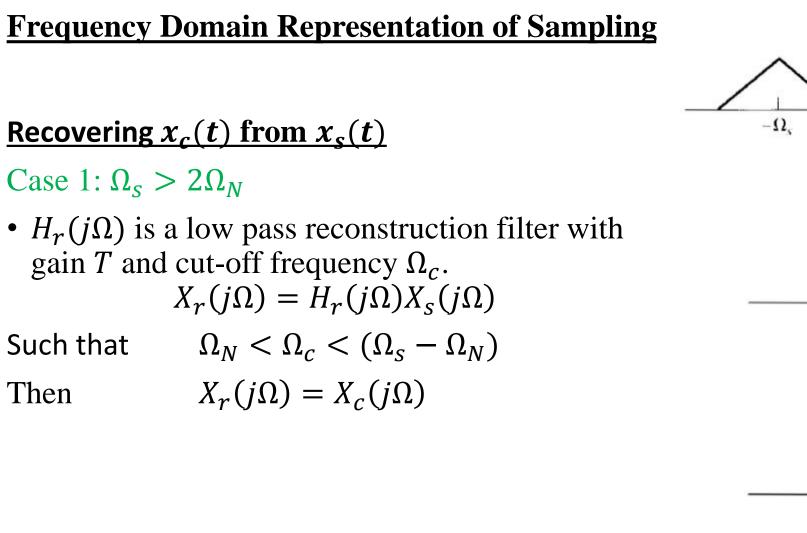
COMSATS

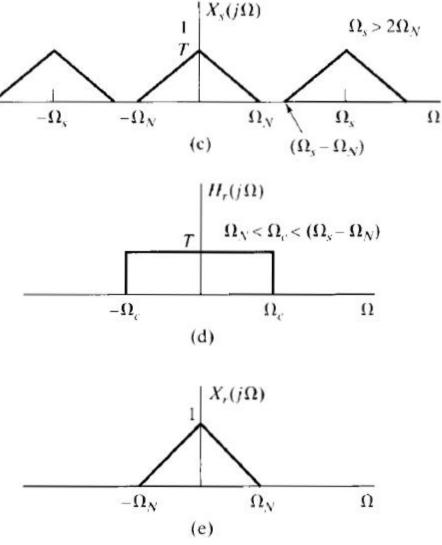
Dr. Shadan Khattak Department of Electrical Engineering CIIT - Abbottabad



Dr. Shadan Khattak Department of Electrical Engineering CIIT - Abbottabad

COMSATS





Recovering $x_c(t)$ from $x_s(t)$

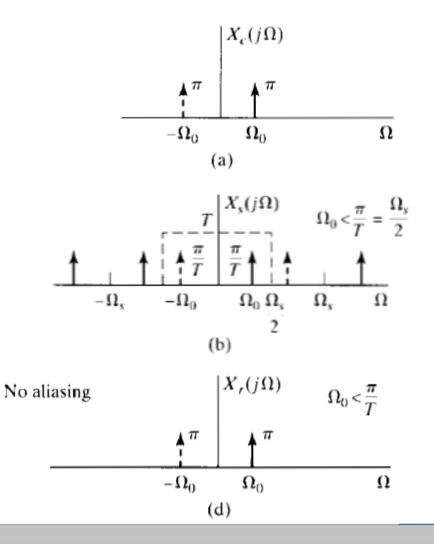
Case 2: $\Omega_s < 2\Omega_N$ (The case of aliasing)

 $X_r(j\Omega) \neq X_c(j\Omega)$

Recovering $x_c(t)$ from $x_s(t)$ Example: $x_c(t) = cos\Omega_0 t$

 $\Omega_0 < \frac{\Omega_s}{2}$

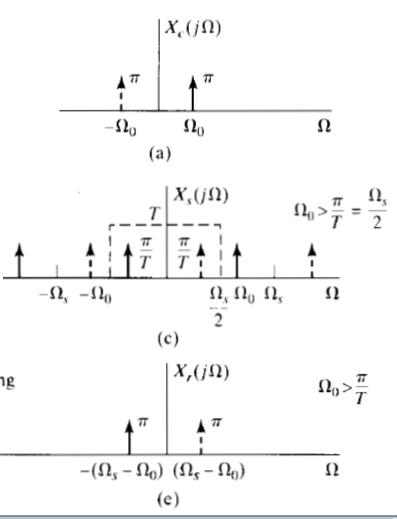
The reconstructed output $x_r(t) = cos\Omega_0 t$



COMSATS

Recovering $x_c(t)$ from $x_s(t)$ Example: $x_c(t) = cos\Omega_0 t$ $\Omega_0 < \frac{\Omega_s}{2}$ The reconstructed output is: $x_r(t) = cos(\Omega_s - \Omega_0) t$

• The higher frequency signal $\cos\Omega_0 t$ has taken on Aliasing the identity (alias) of the lower frequency signal $\cos(\Omega_s - \Omega_0) t$



Nyquist Sampling Theorem

Let $x_c(t)$ be a band-limited signal with

$$X_c(j\Omega) = 0 \text{ for } |\Omega| \ge \Omega_N$$

Then

 $x_c(t)$ is uniquely determined by its samples $x[n] = x_c(nT), \quad r$

$$\tilde{n}] = x_c(n\tilde{T}), \qquad n = 0, \pm 1, \pm 2, \dots \quad if$$

$$\left[\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N\right] \qquad (7)$$

 Ω_N is referred to as the *Nyquist frequency*. $2\Omega_N$ is referred to as the *Nyquist rate*.

Physical meaning of Nyquist theorem is that to recover $x_c(t)$ from its samples $x[n] = x_c(nT)$, there must be at least 2 samples present within each cycle.

(8)

(9)

(10)

Expressing $X(e^{j\omega})$ in terms of $X_s(j\Omega)$ and $X_c(j\Omega)$	
Applying CTFT to Eq. (3).	\sum_{∞}
	$X_{s}(j\Omega) = \sum_{n=-\infty}^{\infty} x_{c}(nT)e^{-j\Omega Tn}$
Since	
And	$x[n] = x_c(nT)$
And	$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$
G	$X(c - f) = \sum_{n = -\infty}^{\infty} x[n]c$
So,	
	$X_{s}(j\Omega) = X(e^{j\omega})\Big _{\omega = \Omega T} = X(e^{j\Omega T})$
Equivalently,	
	$X(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))$
	And
	$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c} \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$

Expressing $X(e^{j\omega})$ in terms of $X_s(j\Omega)$ and $X_c(j\Omega)$

From Eqs. (8) - (10),

• $X(e^{j\omega})$ is a frequency scaled version of $X_s(j\Omega)$ with the frequency scaling specified by $\omega = \Omega T$.

Take Home!

- $x_c(t)$ can be uniquely determined by its samples x[n] if $\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N$
- The FT of the output of the sampler is consists of the periodically repeated and amplitude scaled replicas of the FT of the input.

Reading

• Section 4.0 – 4.2 (Oppenheim)

Practice Problems

• Problems 4.1 – 4.4, 4.8 – 4.11 (Oppenheim)

