
 

IIR FILTER DESIGN EXAMPLE

 

These notes summarize the design procedure for IIR filters as discussed in class on November 2. 

 

Introduction:

 

We are discussing how to design a discrete-time lowpass filter using both the impulse invariance method 
and the bilinear transform method. The specs for the filter to be designed are

• Passband cutoff frequency: 

• Stopband cutoff frequency: 

• Passband ripple

 

1

 

:  dB, 

• Stopband attenuation:  dB, 

In terms of the parameters  and , this means that 

For convenience we define two new parameters  and  that are closely related to  and  as follows:

 

1. 

 

Note that the values of passband and stopband attenuation are given in dB. If 

 

x 

 

has the dimen-
sions of amplitude or magnitude (as opposed to energy or power), the value of 

 

x 

 

expressed in dB 
would be 
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Finally, we are designing our filter by transforming the frequency response of a continuous-time Butter-
worth filter. As you will recall, the Butterworth filter has the transfer function

The parameter 

 

N

 

 specifies the number of poles in the prototype filter, and the parameter  specifies the 
critical cutoff frequency. Note that the magnitude response of the Butterworth filter decreases monotoni-
cally with increasing 

 

N,

 

 that the falloff in response as we transit from passband to stopband becomes 

sharper as 

 

N

 

 increases, and that  equals  when  and  when  for all val-
ues of 

 

N.

 

 

As you will recall from class, a Butterworth filter with parameters 

 

N 

 

and  has 

 

N

 

 poles that fall in the left 

half of the 

 

s-

 

plane, in complex conjugate locations along a circle of radius  separated by angles of 

.

 

Design procedure using impulse invariance

 

Determining design parameters

 

Using the impulse invariance design procedure, we have noted that the relation between frequency in the 
continuous-time and discrete-time domains is , where 

 

T 

 

is merely a design parameter (and not 
necessarily the sampling frequency). Leaving 

 

T

 

 as an arbitrary constant for now, we obtain

At the passband edge frequency,

With a few algebraic manipulations we obtain
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Similarly, at the stopband edge frequency we have

 which produces

Dividing, we obtain

 or

Note that since , the design parameter 

 

T 

 

has no effect at all on the value of 

 

N 

 

that is 

needed. Furthermore, as expected, the value of N specified increases as either  or  decreases in mag-

nitude (which implies decreasing the ripple in the passband and/or stopband) or as the ratio  
decreases (which implies a decrease in the width of the transition band). 

Since the number of poles must be an integer, we round up to . 

Matching the frequency response exactly at passband produces

 or 

(This value is slightly different from the one I gave in class.) If we were instead to match the frequency 
response at stopband, we would obtain

 or 

In principle, any value of the critical frequency that satisfies  would be valid. As dis-

cussed in class, we will choose the value that meets the passband spec exactly,  because 
this value leaves the greatest margin for error at the stopband edge. Since the impulse invariance procedure 
always incurs a certain degree of aliasing, it will be expected that the actual response of the filter at the 
stopband edge will be larger than designed for. Hence, having the stopband edge response be “overde-
signed” will leave more room for error to allow for the effects of aliasing. 
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Prototype filter design

As noted above, the poles of a Butterworth filter lie in the left half of the s-plane on a circle of radius  in 

complex conjugate pairs separated by an angle of  radians. Since there are three poles, this produces 
a filter with the system function

Plugging in the value of , we obtain

and (with the help of MATLAB) we obtain numerically

Conversion to discrete-time form

Using partial fractions we can rewrite the system function of the continuous-time prototype filter as

where the parameters  are the continuous-time residues of the poles . 

Using the MATLAB routine residue we find the residues for the three poles, producing the transfer 
function

The corresponding discrete-time filter has the transfer function

Note that the poles of the continuous-time filter,  are all of the form of a (generally complex) constant 

divided by the parameter T. Since  is multiplied by T wherever it appears in the equation for  

above, the specific value chosen for  has no effect at all on the discrete-time filter that results from the 
design process. Hence we normally let  for simplicity. This produces the transfer function
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or

Combing the second and third terms we obtain

This expression can be implemented easily using any of the techniques discussed in OSB Chapter 6.

Design procedure using bilinear transformation

Determining design parameters

Here we will convert from continuous-time to discrete-time form using the bilinear transform

This produces the nonlinear relationship between continuous-time frequency and discrete-time frequency

 

Converting the critical frequencies  and  to their continuous-time counterparts produces

We use again the design equation

Note that although we still need to have 3 poles, the actual fractional value of N smaller because of the 
greater ratio of stopband to passband edge frequencies provided by the nonlinear frequency warping of the 
bilinear transform.

We will match the specs exactly in the passband, although there is no specific need to do so when we use 
the bilinear transform. The equation for the critical frequency then becomes 
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Prototype filter design

As before, the transfer function for the Butterworth filter is 

Using the MATLAB routine poly and the value for  that we had obtained we find that the transfer 
function of the prototype filter is

Conversion to discrete-time form

We can now substitute directly the bilinear transform relationship 

Note that the design parameter T appears in cubic form in the denominator of every term in numerator and 
denominator. Hence its specific value does not matter and we can cancel it from the design equation. The 
value of the T parameter is frequently set to equal 2 to simplify the expression for the bilinear transform.

We also note that simplifying the expression above is an algebraic nightmare. Using the MATLAB routine 
bilinear with the poles and (null) zeros of  as input parameters (and a value of 1 for the parameter 
T), we obtain
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