

Information Technology

EEE 324 Digital Signal Processing

Lecture 26

Discrete Fourier Transform

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Contents

• Discrete Fourier Transform

Discrete Fourier Transform

- Discrete Fourier Transform (DFT) corresponds to samples, equally spaced in frequency, of the Fourier transform of a finite-duration signal.
- Unlike Discrete Time Fourier Transform (DTFT), DFT is a sequence rather than a function of a continuous variable.
- DFT is important for the implementation of DSP algorithms since there exist efficient algorithms for its computation.
- The Fourier series representation of the periodic sequence corresponds to the DFT of the finite length sequence.

Discrete Fourier Transform

Analysis Equation

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

Synthesis Equation

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}$$

Where

$$W_N = e^{-j(\frac{2\pi}{N})}$$

$$x[n] \stackrel{DFT}{\longleftrightarrow} X[k]$$

• The DFT X[k] is equal to samples of the periodic Fourier transform $X(e^{j\omega})$

Discrete Fourier Transform

(Selected) Properties of DFT

- 1. Linearity
- 2. Circular Shift
- 3. Circular Convolution

1. Linearity

• If two finite duration sequences $x_1[n]$ and $x_2[n]$ are linearly combined i.e., if

 $x_{3}[n] = ax_{1}[n] + bx_{2}[n]$ then, the DFT of $x_{3}[n]$ is $X_{3}[k] = aX_{1}[k] + bX_{2}[k]$

1. Linearity

- If $x_1[n]$ has length N_1 and $x_2[n]$ has length N_2 , then the maximum length of $x_3[n]$ will be $N_3 = \max[N_1, N_2]$.
- Hence, both DFTs must be computed with the same length $N \ge N_3$.
- If $N_1 < N_2$, then $X_1[k]$ must be augmented by $(N_2 N_1)$ zeros.

• That is, the
$$N_2 - point DFT$$
 of $x_1[n]$ is
 $X_1[k] = \sum_{n=0}^{N_1 - 1} x_1[n] W_{N_2}^{kn}$, $0 \le k \le N_2 - 1$
• And the $N_2 - point DFT$ of $x_2[n]$ is
 $X_2[k] = \sum_{n=0}^{N_2 - 1} x_1[n] W_{N_2}^{kn}$, $0 \le k \le N_2 - 1$

1. Linearity

In summary, if

$$x_1[n] \stackrel{DFT}{\longleftrightarrow} X_1[k]$$

And

$$x_2[n] \stackrel{DFT}{\longleftrightarrow} X_2[k]$$

Then

$$ax_1[n] + bx_2[n] \stackrel{DFT}{\longleftrightarrow} aX_1[k] + bX_2[k]$$

2. <u>Circular Shift of a Sequence</u>

 $x_1[n] = x[((n-m))_N]$

Then

If

$$X_1[k] = W_N^{mk} X[k]$$

2. <u>Circular Shift of a Sequence</u> Example 8.8

If
$$x_2[n] = x[((n-4))_6]$$

Then $x_2[n] = x_1[n]$

Because, generally,

$$W_N^{mk} = W_N^{-(N-m)k}$$

• That is, an N - point circular shift in one direction by m is the same as a circular shift in the opposite direction by N - m

3. Circular Convolution

$$x_{3}[n] = x_{1}[n] \otimes x_{2}[n]$$

$$x_{3}[n] = \sum_{m=0}^{N-1} x_{1}[((m))_{N}]x_{2}[((n-m))_{N}], \qquad 0 \le n \le N-1$$

$$x_{3}[n] = \sum_{m=0}^{N-1} x_{1}[m]x_{2}[((n-m))_{N}], \qquad 0 \le n \le N-1$$

$$x_{3}[n] \stackrel{DFT}{\longleftrightarrow} X_{1}[k]X_{2}[k]$$

3. <u>Circular Convolution</u>

Example 8.11

- Case 1: N = L (Circular Convolution)
- Case 2: N = 2L (Linear Convolution)

1.	x[n]	X[k]
2.	$x_1[n], x_2[n]$	$X_1[k], X_2[k]$
3.	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$
4.	X[n]	$Nx[((-k))_N]$
5.	$x[((n-m))_N]$	$W_N^{km}X[k]$
6.	$W_N^{-\ell n} x[n]$	$X[((k-\ell))_N]$
7.	$\sum_{m=0}^{N-1} x_1(m) x_2[((n-m))_N]$	$X_1[k]X_2[k]$
8.	$x_1[n]x_2[n]$	$\frac{1}{N} \sum_{\ell=0}^{N-1} X_1(\ell) X_2[((k-\ell))_N]$
9.	x*[n]	$X^{\star}[((-k))_N]$
10.	$x^{*}[((-n))_{N}]$	X*[k]
11.	$\mathcal{R}e\{x[n]\}$	$X_{\rm ep}[k] = \frac{1}{2} \{ X[((k))_N] + X^*[((-k))_N] \}$
12.	$j\mathcal{J}m\{x[n]\}$	$X_{\rm op}[k] = \frac{1}{2} \{ X[((k))_N] - X^*[((-k))_N] \}$
13.	$x_{\rm ep}[n] = \frac{1}{2} \{ x[n] + x^* [((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
14.	$x_{\rm op}[n] = \frac{1}{2} \{ x[n] - x^* [((-n))_N] \}$	$j\mathcal{J}m\{X[k]\}$
Properties 15–17 apply only when $x[n]$ is real.		
15.	Symmetry properties	$\begin{cases} X[k] = X^*[((-k))_N] \\ \mathcal{R}e\{X[k]\} = \mathcal{R}e\{X[((-k))_N]\} \\ \mathcal{J}m\{X[k]\} = -\mathcal{J}m\{X[((-k))_N]\} \\ X[k] = X[((-k))_N] \\ \triangleleft\{X[k]\} = -\triangleleft\{X[((-k))_N]\} \end{cases}$
16.	$x_{\rm ep}[n] = \frac{1}{2} \{ x[n] + x[((-n))_N] \}$	$\mathcal{R}e\{X[k]\}$
17.	$x_{op}[n] = \frac{1}{2} \{x[n] - x[((-n))_N]\}$	$j\mathcal{J}m\{X[k]\}$

Practice Problems

Problems: 8.5, 8.6, 8.10, 8.11, 8.13, 8.14.

