ECI750 Multimedia Data Compression Lecture 2 Information Theory and Coding - 1

Dr. Shadan Khattak
Department of Electrical Engineering
COMSATS Institute of Information Technology - Abbottabad

Modelling and Coding

- Generally, data compression algorithms go through two phases:

- Modelling
- We try to extract information about any redundancy that exists in the data and describe the redundancy in the form of a model.
- Coding
- A description of the model and a description of how the data differ from the model are encoded, generally, using a binary alphabet.
- The difference between the model and the data is often referred to as the residual.

Are they similar?

Modelling and Coding

- Example 1.2.1 (Linear model)

- Data sequence x_{i},

9	11	11	11	14	13	15	17	16	17	20	21

- Its binary representation will cost: 5 bits $\left(2^{5}=32\right)$
- A model for this data could be a straight line defined by the equation

$$
\hat{x}_{n}=n+8 \quad n=1,2,3 \ldots
$$

- Residual:

$$
\begin{aligned}
e_{n} & =x_{n}-\hat{x}_{n} \\
& =0,1,0,-1,1,-1,0, \ldots
\end{aligned}
$$

- Binary representation of the residual will cost: 2 bits $\left(2^{2}=4\right)$

Modelling and Coding

- Example 1.2.2 (Differential Model)

- Data sequence x_{i},

27	28	29	28	26	27	29	28	30	32	34	36	38

- Each value is close to the previous value.
- Send the first value, then for subsequent values, send difference between it and previous value i.e.,

27	1	1	-1	-2	1	2	-1	2	2	2	2	2

- Such coding is called predictive coding.

- The number of distinct values has been reduced (fewer bits are required to represent each number and compression is achieved)

Modelling and Coding

- Example 1.2.3 (Variable length coding)

- Given a sequence of symbols, abarayaranbarraybranbfarbfaarbfaaarbaway
- Unique symbols: 7
- If fixed length coding (FLC) is used: 3 bits/symbol $\left(2^{3}=9\right)$

TABLE1.1	A code with codewords of varying length.
a	1
n	001
b	01100
f	0100
n	0111
r	000
y	01101

Information Theory

- Shannon defines "self-information" as an entity that measures the amount of information associated with an event A of probability $\mathrm{P}(\mathrm{A})$ as:

$$
i(A)=\log _{b} \frac{1}{P(A)}=-\log _{b} P(A)
$$

- If the probability of an event is low, the amount of self-information associated with it is high.
- If the probability of an event is high, the amount of self-information associated with it is low.

$$
\begin{gathered}
i(A)=0 \text { for } P(A)=1 \\
i(A) \geq 0 \text { for } 0 \leq P(A) \leq 1 \\
i(A)>i(B) \text { for } P(A)<P(B) \\
i(A B)=i(A)+i(B) \text { if } A \text { and } B \text { are independent events }
\end{gathered}
$$

Information Theory

- Preliminaries of the logarithm function
- $\log _{b} x=a$ means that $b^{a}=x$
- If $\log _{b} x$ is not available on your calculator, you can calculate it as:
- $\frac{\ln x}{\ln b}=a$
- E.g., $\log _{2} 8=3$
- This result can also be obtained as:
- $\frac{\ln 8}{\ln 2}=\frac{2.07944154168}{0.69314718056}=3$

Information Theory

- Example 2.2.1
a) For a fair coin:
- $P(H)=\frac{1}{2}, i(H)=$?
- $P(T)=\frac{1}{2}, i(T)=$?
b) If the coin is not fair and the probabilities are:
- $P(H)=1 / 8, P(T)=7 / 8$
- $i(H)=$?, $\quad i(T)=$?

Ans:
a. $i(H)=i(T)=1$ bit
b. $i(H)=3$ bits, $i(T)=0.193$ bits

Information Theory

- Entropy

- If we have a set of independent events A_{i}, S is the sample space of all events, then the average self-information is given by:

$$
H=\sum P\left(A_{i}\right) i\left(A_{i}\right)=-\sum P\left(A_{i}\right) \log _{b} P\left(A_{i}\right)
$$

- Here, H is called the entropy associated with the experiment.
- Given a data source S, entropy is the minimal average number of bits to represent the output.

Information Theory

- Estimation of Source Entropy (1)

- As entropy depends on probability which may not be known in advance of an event.
- So what do we do if we don't know the probability of an event? We estimate the entropy!
- Example:

$$
\begin{gathered}
S=12323454567898910 \\
P(1)=P(6)=P(7)=P(10)=\frac{1}{16} \\
P(2)=P(3)=P(4)=P(5)=P(8)=P(9)=\frac{2}{16} \\
H=-\sum_{i=1}^{10} P(i) \log _{2} P(i) \\
=3.25 \mathrm{bits}
\end{gathered}
$$

Information Theory

- Estimation of Source Entropy (2)

- If we assume a sample-to-sample correlation and remove the correlation by taking differences of neighbouring sample values, we get the residual sequence R i.e.

$$
R=111-1111-111111-111
$$

- The sequence has only two symbols (1) and (-1).

$$
\begin{aligned}
& P(1)=\frac{13}{16}, P(-1)=\frac{3}{16} \\
& H=-\sum P(i) \log _{2} P(i) \\
& =0.7 \text { bits }
\end{aligned}
$$

Information Theory

- Estimation of Source Entropy (3)

- Source alphabet can be manipulated to reduce its entropy. For example, consider:

$$
S=12123333123333123312
$$

- What is the entropy if letters 1,2 , and 3 are considered independently?
- 1.5 bits/symbol.
- Total bits required $=20 \times 1.5=30$.
- Does the entropy decrease if we take blocks of two letters instead? E.g., 12 and 33 .
- Yes. Now entropy is $1 \mathrm{bit} / \mathrm{symbol}$. Total bits required $=10 \times 1=10$ (a reduction of a factor of 3)

Models for Coding

- Physical Models
- Probability Models
- Markov Models
- Composite Models

Models for Coding

- Physical Models
- Speech model
- Telemetry model
- Models based on physics are very complicated and are difficult to implement
- So what do we do? We use statistical (probabilistic) models!

Models for Coding

- Probability Models
- For a source that generates letters from an alphabet $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{M}\right\}$, we can have a probability model $P=\left\{P\left(a_{1}\right), P\left(a_{2}\right), P\left(a_{3}\right), \ldots, P\left(a_{M}\right)\right\}$

Models for Coding

- Markov Models

- A sequence $\left\{x_{n}\right\}$ fits a $k^{t h}$ order Markov model if

$$
P\left(x_{n} \mid x_{n-1}, \ldots, x_{n-k}\right)=P\left(x_{n} \mid x_{n-1}, \ldots, x_{n-k}, \ldots\right)
$$

(probability of the next symbols can be determined completely by knowing the past k symbols)

- Each sequence of x_{n-1}, \ldots, x_{n-k} is called a state.
- If the alphabet set has size m, the number of states is m^{k}.
- First order Markov model is most commonly used.
- Markov models are particularly useful in text compression.
- Also called finite context models
- The larger the context, the lesser is the entropy but the more complex is the system
- E.g., an alphabet of 95 letters with the last 4 symbols as context, the total number of contexts is $95^{4} \sim 81$ million

Models for Coding

- Markov Source Model
- Markov model can also be described using a state transition diagram e.g., a two-state Markov model:

Models for Coding

- Entropy of a Finite-State Process
- The entropy of a finite state process with state S_{i} can be computed by:

$$
H=\sum_{i=1}^{M} P\left(S_{i}\right) H\left(S_{i}\right)
$$

(where $H\left(S_{i}\right)$ is the entropy of a state S_{i})

- For example, for the two-state Markov model:

$$
H\left(S_{w}\right)=-P(b \mid w) \log P(b \mid w)-P(w \mid w) \log P(w \mid w)
$$

$($ where $\mathrm{P}(w \mid w)=1-P(b \mid w)$

Models for Coding

- I.I.D vs Markov Model
- For the two-state model, assume that

$$
\begin{gathered}
P\left(S_{w}\right)=\frac{30}{31}, P\left(S_{b}\right)=\frac{1}{31} \\
P(w \mid w)=0.99, P(b \mid w)=0.01 \\
P(b \mid b)=0.7, P(w \mid b)=0.3
\end{gathered}
$$

- Under the iid assumption, the entropy is 0.206

Models for Coding

- I.I.D vs Markov Model
- Using Markov Model,

$$
H=\sum_{i=1}^{2} P\left(S_{i}\right) H\left(S_{i}\right)
$$

$$
\begin{gathered}
H\left(S_{w}\right)=-0.01 \log (0.01)-0.99 \log (0.99)=0.0664+0.0142=0.081 \\
H\left(S_{B}\right)=-0.7 \log (0.7)-0.3 \log (0.3)=0.881 \\
H=\frac{30}{31} * 0.081+\frac{1}{31} * 0.881=0.0783+0.0284=0.1067
\end{gathered}
$$

- The entropy is 0.1067

Models for Coding

- Composite Source Model

- A composite source model can be described by n different sources and the probability P_{i} to select $i^{t h}$ source:

