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Modelling and Coding 

• Generally, data compression algorithms go through two phases: 

• Modelling 

• We try to extract information about any redundancy that exists in the data and describe the 
redundancy in the form of a model. 

• Coding 

• A description of the model and a description of how the data differ from the model are 
encoded, generally, using a binary alphabet. 

• The difference between the model and the data is often referred to as the residual. 

 

 

•                                                       Are they similar? 
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• Example 1.2.1 (Linear model) 

• Data sequence 𝑥𝑖, 

 

• Its binary representation will cost: 5 bits (25 = 32) 

• A model for this data could be a straight line defined by the 
equation 

𝑥 𝑛 = 𝑛 + 8          𝑛 = 1,2,3… 

• Residual: 
𝑒𝑛 = 𝑥𝑛 − 𝑥 𝑛 

                            = 0,1,0,−1,1,−1,0,… 

• Binary representation of the residual will cost: 2 bits (22 = 4) 
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• Example 1.2.2 (Differential Model) 

• Data sequence 𝑥𝑖, 

 

• Each value is close to the previous value. 

• Send the first value, then for subsequent values, send 
difference between it and previous value i.e.,  

 

• Such coding is called predictive coding. 

• The number of distinct values has been reduced (fewer bits 
are required to represent each number and compression is 
achieved) 
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• Example 1.2.3 (Variable length coding) 

• Given a sequence of symbols, 

 

• Unique symbols: 7 

• If fixed length coding (FLC) is used: 3 bits/symbol 
23 = 9  

• If variable length coding (VLC) is used: 2.58 
bits/symbol 

• Compression Ratio = 
3

2.58
=

1.16

1
= 1.16: 1 
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• Shannon defines “self-information” as an entity that measures the amount of 
information associated with an event A of probability P(A) as: 

𝑖 𝐴 = 𝑙𝑜𝑔𝑏

1

𝑃 𝐴
= −𝑙𝑜𝑔𝑏𝑃(𝐴) 

• If the probability of an event is low, the amount of self-information 
associated with it is high. 

• If the probability of an event is high, the amount of self-information 
associated with it is low. 

𝑖 𝐴 = 0 𝑓𝑜𝑟 𝑃 𝐴 = 1 
𝑖 𝐴 ≥ 0 𝑓𝑜𝑟 0 ≤ 𝑃(𝐴) ≤ 1 

𝑖 𝐴 > 𝑖 𝐵  𝑓𝑜𝑟 𝑃 𝐴 < 𝑃 𝐵  
𝑖 𝐴𝐵 = 𝑖 𝐴 + 𝑖 𝐵  𝑖𝑓 𝐴 𝑎𝑛𝑑 𝐵 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑒𝑣𝑒𝑛𝑡𝑠 

 

 



Information Theory 

Dr. Shadan Khattak 

Department of Electrical Engineering 

CIIT - Abbottabad 

 

• Preliminaries of the logarithm function 

• log𝑏 𝑥 = 𝑎 means that 𝑏𝑎 = 𝑥 

• If log𝑏𝑥 is not available on your calculator, you can calculate it as: 

•
𝑙𝑛𝑥

𝑙𝑛𝑏
= 𝑎 

• E.g., log2 8 = 3 

• This result can also be obtained as: 

•
𝑙𝑛8

𝑙𝑛2
=

2.07944154168
0.69314718056

= 3 

 

 



• Example 2.2.1 

a) For a fair coin: 

• 𝑃(𝐻)  =
1

2
, 𝑖(𝐻)  = ? 

• 𝑃(𝑇)  =
1

2
, 𝑖(𝑇)  = ? 

b) If the coin is not fair and the probabilities are: 
• 𝑃(𝐻)  =  1/8, 𝑃(𝑇)  =  7/8  

• 𝑖 𝐻 = ?,    𝑖 𝑇 = ?  

Ans: 

a. 𝑖(𝐻)  =  𝑖(𝑇)  =  1 𝑏𝑖𝑡 

b. 𝑖(𝐻)  =  3 𝑏𝑖𝑡𝑠, 𝑖(𝑇)  =  0.193 𝑏𝑖𝑡𝑠 
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• Entropy 

• If we have a set of independent events 𝐴𝑖, 𝑆 is the sample space of all events, 
then the average self-information is given by: 

𝐻 =  𝑃 𝐴𝑖 𝑖 𝐴𝑖 = −  𝑃(𝐴𝑖) log𝑏 𝑃(𝐴𝑖) 

• Here, H is called the entropy associated with the experiment. 

• Given a data source 𝑆, entropy is the minimal average number of bits to 
represent the output.  
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• Estimation of Source Entropy (1) 
• As entropy depends on probability which may not be known in advance of an event.  

• So what do we do if we don’t know the probability of an event? We estimate the 
entropy! 

• Example:  
𝑆 = 1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 10 

𝑃 1 = 𝑃 6 = 𝑃 7 = 𝑃 10 =
1

16
 

𝑃 2 = 𝑃 3 = 𝑃 4 = 𝑃 5 = 𝑃 8 = 𝑃 9 =
2

16
 

𝐻 = − 𝑃 𝑖 log2 𝑃(𝑖)

10

𝑖=1

 

= 3.25 𝑏𝑖𝑡𝑠 
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• Estimation of Source Entropy (2) 

• If we assume a sample-to-sample correlation and remove the correlation by 
taking differences of neighbouring sample values, we get the residual sequence 
𝑅 i.e. 

𝑅 = 1 1 1 − 1 1 1 1 − 1 1 1 1 1 1 − 1 1 1  

• The sequence has only two symbols (1) and (-1). 

𝑃 1 =
13

16
, 𝑃 −1 =

3

16
 

𝐻 = − 𝑃 𝑖 log2 𝑃(𝑖) 

= 0.7 𝑏𝑖𝑡𝑠 
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• Estimation of Source Entropy (3) 

• Source  alphabet can be manipulated to reduce its entropy. For example, 
consider: 

𝑆 = 1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2 

• What is the entropy if letters 1, 2, and 3 are considered independently? 

• 1.5 bits/symbol.  

• Total bits required = 20 x 1.5 = 30. 

• Does the entropy decrease if we take blocks of two letters instead? E.g., 1 2 
and 3 3.  

• Yes. Now entropy is 1 bit/symbol. Total bits required = 10 x 1 = 10 (a reduction of a 
factor of 3) 
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• Physical Models 

• Probability Models 

• Markov Models 

• Composite Models 
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• Physical Models 

• Speech model 

• Telemetry model 

• Models based on physics are very complicated and are difficult to implement 

• So what do we do? We use statistical (probabilistic) models! 
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• Probability Models 

• For a source that generates letters from an alphabet 𝐴 = *𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑀+, we 
can have a probability model 𝑃 = *𝑃 𝑎1 , 𝑃 𝑎2 , 𝑃 𝑎3 , … , 𝑃 𝑎𝑀 + 
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• Markov Models 

• A sequence *𝑥𝑛+ fits a 𝑘𝑡 order Markov model if 
𝑃 𝑥𝑛 𝑥𝑛−1, … , 𝑥𝑛−𝑘 = 𝑃(𝑥𝑛|𝑥𝑛−1, … , 𝑥𝑛−𝑘 , … ) 

(probability of the next symbols can be determined completely by knowing the past 𝑘 symbols) 

• Each sequence of 𝑥𝑛−1, … , 𝑥𝑛−𝑘 is called a state. 

• If the alphabet set has size 𝑚, the number of states is 𝑚𝑘 . 

• First order Markov model is most commonly used. 

• Markov models are particularly useful in text compression. 

• Also called finite context models 

• The larger the context, the lesser is the entropy but the more complex is the system 

• E.g., an alphabet of 95 letters with the last 4 symbols as context, the total number of contexts is 
954~81 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 
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• Markov Source Model 

 

• Markov model can also be described using a state transition diagram e.g., a 
two-state Markov model: 
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• Entropy of a Finite-State Process 
• The entropy of a finite state process with state 𝑆𝑖 can be computed by: 

 

𝐻 =  𝑃 𝑆𝑖 𝐻(𝑆𝑖)

𝑀

𝑖=1

 

 

(where 𝐻(𝑆𝑖) is the entropy of a state 𝑆𝑖) 

 

• For example, for the two-state Markov model: 

 
𝐻 𝑆𝑤 = −𝑃 𝑏 𝑤 𝑙𝑜𝑔𝑃 𝑏 𝑤 − 𝑃 𝑤 𝑤 𝑙𝑜𝑔𝑃 𝑤 𝑤 , 

 
(where P 𝑤 𝑤 = 1 − 𝑃(𝑏|𝑤) 
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• I.I.D vs Markov Model 

• For the two-state model, assume that 

𝑃 𝑆𝑤 =
30

31
, 𝑃 𝑆𝑏 =

1

31
 

𝑃 𝑤|𝑤 = 0.99, 𝑃 𝑏|𝑤 = 0.01 
𝑃 𝑏|𝑏 = 0.7, 𝑃 𝑤|𝑏 = 0.3 

 

• Under the iid assumption, the entropy is 0.206 
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• I.I.D vs Markov Model 

• Using Markov Model,  

𝐻 =  𝑃 𝑆𝑖 𝐻(𝑆𝑖)

2

𝑖=1

 

 
𝐻 𝑆𝑤 = −0.01 log 0.01 − 0.99 log 0.99 = 0.0664 + 0.0142 = 0.081 

𝐻 𝑆𝐵 = −0.7 log 0.7 − 0.3 log 0.3 = 0.881 

𝐻 =
30

31
∗ 0.081 +

1

31
∗ 0.881 = 0.0783 + 0.0284 = 0.1067 

• The entropy is 0.1067 
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• Composite Source Model 

• A composite source model can be described by 𝑛 different sources and the 
probability 𝑃𝑖 to select 𝑖𝑡ℎ source: 

 

 


