

EEE 324 Digital Signal Processing

# Lecture 2

#### Sampling and Reconstruction of Sinusoidal Signals

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad



## Contents

• Sampling and Reconstruction of a Sinusoidal Signal



# Introduction

• In this lecture, with the help of three examples, we will see the effect of changing the sampling frequency on the sampling and reconstruction of sinusoidal signals.



### Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal) $x_c(t) = \cos(4000\pi t)$ $T = \frac{1}{6000}$

To do:

- 1. Sample the above signal (Obtain x[n])
- 2. Reconstruct the above signal from its samples obtained in Part 1 (Obtain  $x_r(t)$  from x[n] or  $x_s(t)$ )



Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal)  $x_c(t) = \cos(4000\pi t)$   $T = \frac{1}{6000}$ 1. Sampling

$$x[n] = x_c(nT) = \cos(4000\pi nT) = \cos\left(\frac{4000\pi n}{6000}\right) = \cos\left(\frac{2\pi}{3}n\right)$$
  
Comparing with the general form of a sinusoid ( $\cos(\omega_0 n)$ )  
 $\omega_0 = \frac{2\pi}{3}$ 



Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{6000}$ 

#### 1. Sampling

a. Check for aliasing:

$$\Omega_s \ge 2\Omega_0?$$
  

$$\Omega_s = \frac{2\pi}{T_o} = 12000\pi$$
  

$$\Omega_0 = \frac{T_o}{T_o} = 4000\pi$$

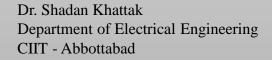
 $\Rightarrow$  No Aliasing (Nyquist conditions satisfied)



Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal)  $x_c(t) = \cos(4000\pi t)$   $T = \frac{1}{6000}$ 1. Sampling

b. Find FT of  $x_c(t)$   $X_c(j\Omega) = \pi \delta(\Omega - \Omega_0) + \pi \delta(\Omega + \Omega_0)$ Recall that  $\pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$   $a_1 = a_1 = \frac{1}{2}$  $a_4 = 0$ , otherwise

 $X_c(j\Omega) = \pi\delta(\Omega - 4000\pi) + \pi\delta(\Omega + 4000\pi)$ 





**Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal)**  $x_c(t) = cos(4000\pi t)$ 

$$T = \frac{1}{6000}$$

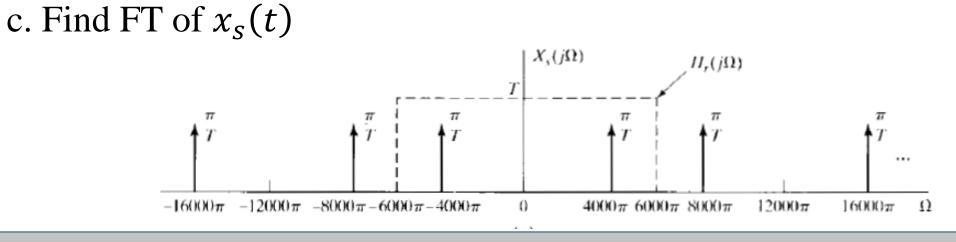
1. <u>Sampling</u>

c. Find FT of  $x_s(t)$ We know that  $X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$ For  $\Omega_s = 12000\pi$  $X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k12000\pi))$ 



## Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal) $x_c(t) = \cos(4000\pi t)$ $T = \frac{1}{6000}$

1. <u>Sampling</u>



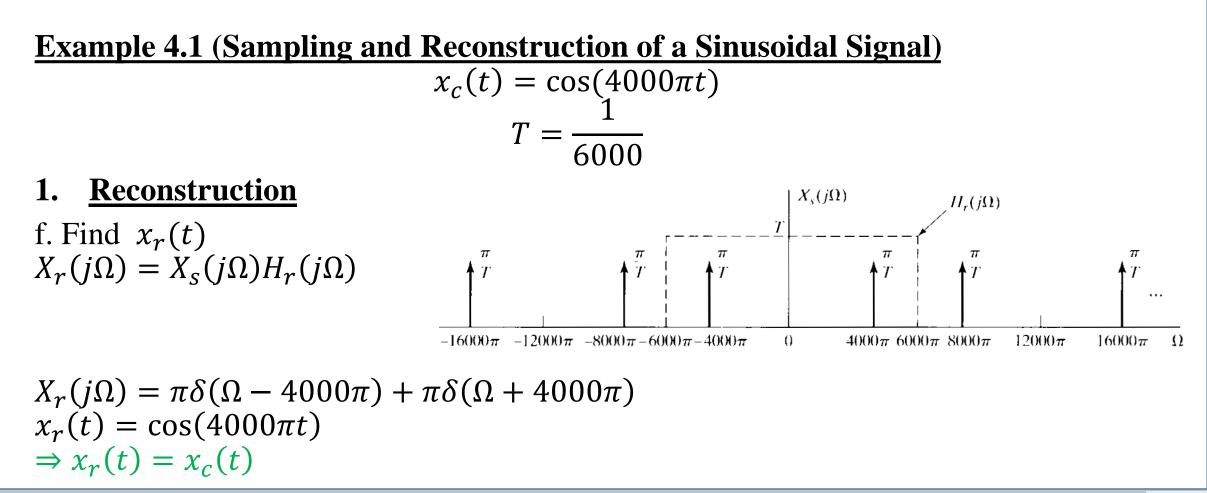


**Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal)**  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{6000}$ Sampling  $X(e^{j\omega}) = X_{i}(j\omega/T)$ d. Find FT of x[n] $-\frac{8\pi}{3} - 2\pi - \frac{4\pi}{3} - \pi - \frac{2\pi}{3} - \pi - \frac{$  $X_s(j\Omega) = X(e^{j\omega})\Big|_{\Omega = \Omega^m}$ ω Scaling the independent variable of an impulse also scales its area i.e.,  $\delta\left(\frac{\omega}{\tau}\right) = T\delta(\omega)$ 



Example 4.1 (Sampling and Reconstruction of a Sinusoidal Signal)  $x_{c}(t) = \cos(4000\pi t)$   $T = \frac{1}{6000}$ 1. Sampling e. Find x[n] $x[n] = \cos\left(\frac{2\pi}{3}n\right)$   $x[n] = \cos\left(\frac{2\pi}{3}n\right)$   $x[n] = \cos\left(\frac{2\pi}{3}n\right)$ 







#### **Example 4.2 (Aliasing in the Reconstruction of an Undersampled Sinusoidal Signal)**

$$x_c(t) = \cos(16000\pi t)$$
$$T = \frac{1}{6000}$$

To do:

- 1. Sample the above signal (Obtain x[n])
- 2. Reconstruct the above signal from its samples obtained in Part 1 (Obtain  $x_r(t)$  from x[n] or  $x_s(t)$ )



**Example 4.2 (Aliasing in the Reconstruction of an Undersampled Sinusoidal Signal)** 

$$x_c(t) = \cos(16000\pi t)$$
  
 $T = \frac{1}{6000}$ 

### 1. <u>Sampling</u> $x[n] = x_c(nT) = \cos(16000\pi nT) = \cos\left(\frac{16000\pi n}{6000}\right) = \cos\left(\frac{8\pi}{3}n\right) = \cos\left(\frac{2\pi}{3}n\right)$ Comparing with the general form of a sinusoid $(\cos(\omega_0 n))$ $\omega_0 = \frac{8\pi}{3}$



**Example 4.2 (Aliasing in the Reconstruction of an Undersampled Sinusoidal** <u>Signal)</u>

 $x_c(t) = \cos(16000\pi t)$  $T = \frac{1}{6000}$ 

#### 1. <u>Sampling</u>

a. Check for aliasing:

$$\Omega_s \ge 2\Omega_0?$$
  

$$\Omega_s = \frac{2\pi}{T} = 12000\pi$$
  

$$\Omega_0 = \frac{\omega_0}{T} = 16000\pi$$

 $\Rightarrow$  Aliasing (Nyquist conditions not satisfied)



#### **Example 4.2 (Aliasing in the Reconstruction of an Undersampled Sinusoidal Signal)**

$$x_c(t) = \cos(16000\pi t)$$
$$T = \frac{1}{6000}$$

1. <u>Sampling</u>

b. Find FT of 
$$x_c(t)$$
  
 $X_c(j\Omega) = \pi \delta(\Omega - \Omega_0) + \pi \delta(\Omega + \Omega_0)$   
Recall that  $\cos \omega_0 t$   
 $\pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$   
 $a_1 = a_{-1} = \frac{1}{2}$   
 $a_1 = 0$ , otherwise

 $X_c(j\Omega) = \pi \delta(\Omega - 16000\pi) + \pi \delta(\Omega + 16000\pi)$ 



**Example 4.2 (Aliasing in the Reconstruction of an Undersampled Sinusoidal Signal)** 

$$x_c(t) = \cos(16000\pi t)$$
$$T = \frac{1}{6000}$$

#### 1. <u>Sampling</u>

c. Find FT of  $x_s(t)$ 

We know that 
$$X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$$

For  $\Omega_s = 12000\pi$ 

$$X_{s}(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\Omega - k12000\pi))$$



#### **Example 4.2 (Aliasing in the Reconstruction of an Undersampled** <u>Sinusoidal Signal)</u>

$$x_c(t) = \cos(16000\pi t)$$
$$T = \frac{1}{6000}$$

#### 1. <u>Sampling</u>

d. Find FT of x[n]  $X_s(j\Omega) = X(e^{j\omega})\Big|_{\omega=\Omega T}$ Scaling the independent variable of an impulse also scales its area

i.e., 
$$\delta\left(\frac{\omega}{T}\right) = T\delta(\omega)$$



**Example 4.2 (Aliasing in the Reconstruction of an Undersampled Sinusoidal Signal)** 

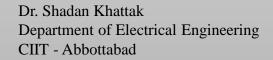
$$x_c(t) = \cos(16000\pi t)$$
$$T = \frac{1}{6000}$$

Sampling
 Find x[n]
 x[

$$x[n] = \cos\left(\frac{2\pi}{3}n\right)$$



- We have obtained the same sequence of samples  $x[n] = \cos\left(\frac{2\pi}{3}n\right)$  by sampling two different CT signals with the same sampling frequency.
- In one case, the sampling frequency satisfied the Nyquist criterion.
- In the other, the sampling frequency did not satisfy the Nyquist criterion.
- In Example 4.2, the reconstructed signal would have frequency  $\Omega_0 = 4000\pi$ , which is not the frequency of the original signal  $x_c(t)$  in Example 4.2
- $x_r(t) = \cos(4000\pi t)$  $\Rightarrow x_r(t) \neq x_c(t)$





### Example 4.3 (A Second Example of Aliasing) $x_c(t) = \cos(4000\pi t)$ $T = \frac{1}{1500}$

To do:

- 1. Sample the above signal (Obtain x[n])
- 2. Reconstruct the above signal from its samples obtained in Part 1 (Obtain  $x_r(t)$  from x[n] or  $x_s(t)$ )



Example 4.3 (A Second Example of Aliasing)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{1500}$ 

1. <u>Sampling</u>

$$x[n] = x_c(nT) = \cos(4000\pi nT) = \cos\left(\frac{4000\pi n}{1500}\right) = \cos\left(\frac{8\pi}{3}n\right)$$
  
Comparing with the general form of a sinusoid ( $\cos(\omega_0 n)$ )  
 $\omega_0 = \frac{8\pi}{3}$ 





Example 4.3 (A Second Example of Aliasing)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{1500}$ 

#### 1. Sampling

a. Check for aliasing:

$$\Omega_{s} \ge 2\Omega_{0}?$$

$$\Omega_{s} = \frac{2\pi}{\frac{T}{D_{0}}} = 3000\pi$$

$$\Omega_{0} = \frac{\frac{T}{D_{0}}}{T} = 4000\pi$$

 $\Rightarrow$  Aliasing (Nyquist conditions not satisfied)



Example 4.3 (A Second Example of Aliasing)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{1500}$ 

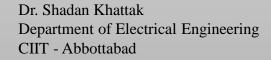
1. <u>Sampling</u>

COS Wat

b. Find FT of  $x_c(t)$   $X_c(j\Omega) = \pi\delta(\Omega - \Omega_0) + \pi\delta(\Omega + \Omega_0)$ Recall that

$$\pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \qquad \begin{array}{l} a_1 = a_{-1} = \frac{1}{2} \\ a_1 = 0, \quad \text{otherwise} \end{array}$$

 $X_c(j\Omega) = \pi \delta(\Omega - 4000\pi) + \pi \delta(\Omega + 4000\pi)$ 





Example 4.3 (A Second Example of Aliasing)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{1500}$ 

#### 1. <u>Sampling</u>

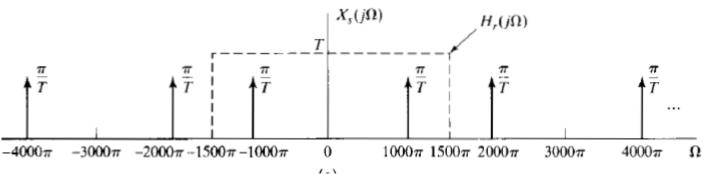
c. Find FT of  $x_s(t)$ We know that  $X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k\Omega_s))$ For  $\Omega_s = 3000\pi$  $X_s(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(j(\Omega - k3000\pi))$ 

COMSATS

Example 4.3 (A Second Example of Aliasing)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{1500}$ 

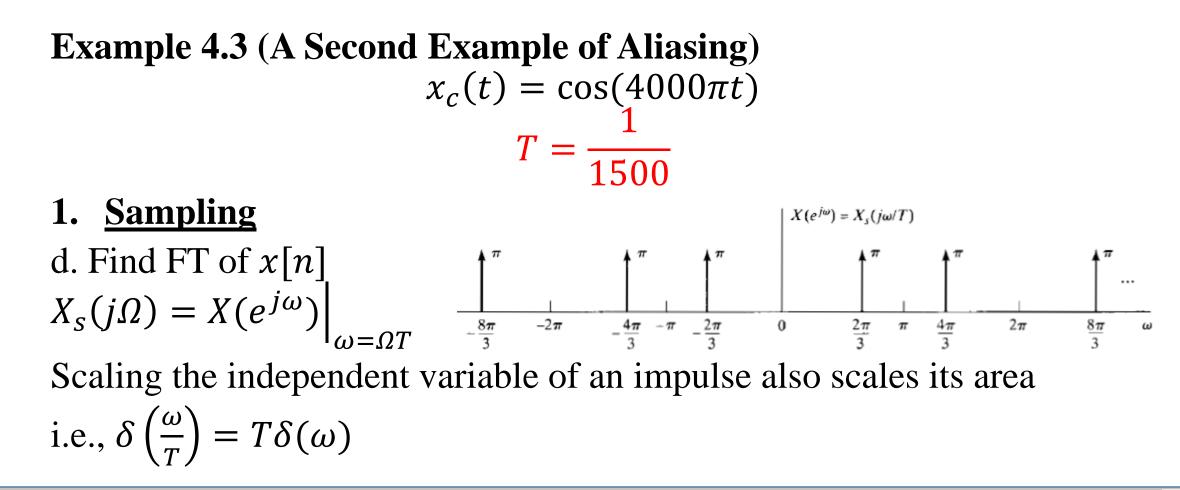
1. <u>Sampling</u>













Example 4.3 (A Second Example of Aliasing)  $x_c(t) = \cos(4000\pi t)$  $T = \frac{1}{1500}$ 

1. <u>Sampling</u>

e. Find x[n] $x[n] = \cos\left(\frac{2\pi}{3}n\right)$ 



### Example 4.3 (A Second Example of Aliasing) $x_c(t) = \cos(4000\pi t)$ $T = \frac{1}{1500}$

- The same DT signal may result from sampling the same CT signal at two different sampling rates.
- The reconstructed CT signal would have frequency  $\Omega_0 = 1000\pi$  and not  $4000\pi$ .
- $x_r(t) = \cos(1000\pi t)$  $\Rightarrow x_r(t) \neq x_c(t)$



#### **Take Home!**

- It is possible to get the same DT sequence in the following two cases:
  - When two different CT signals are sampled using the same sampling rate.
  - When the same CT signal is sampled using two different sampling rates.
- Aliasing occurs when Nyquist condition is not satisfied during sampling.



#### **Take Home!**

- It is possible to get the same DT sequence in the following two cases:
  - When two different CT signals are sampled using the same sampling rate.
  - When the same CT signal is sampled using two different sampling rates.
- Aliasing occurs when Nyquist condition is not satisfied during sampling.



## **Reading**

• Section 4.0 – 4.2 (Oppenheim)



## **Practice Problems**

• Problems 4.1 – 4.4, 4.8 – 4.11 (Oppenheim)

