ECI750 Multimedia Data Compression Lecture 3
 Information Theory and Coding - II

Dr. Shadan Khattak
Department of Electrical Engineering
COMSATS Institute of Information Technology - Abbottabad

Coding

- Coding
- It is the assignment of binary sequences to elements of an alphabet.
- The set of binary sequences is called a code.
- The individual members of the set are called codewords.
- An alphabet is a collection of symbols called letters.
- For example:
- The English alphabet has 26 letters.
- The alphabet of this book consist of 26 uppercase letters, 26 lowercase letters, and punctuation marks.
- ASCII codes:

$$
\begin{aligned}
& \text { a: } 1000011 \\
& \text { A: } 1000001 \\
& ,: 0011010
\end{aligned}
$$

Coding

- Coding

- When same number of bits are used to represent each symbol in an alphabet, the code is called a fixed-length code.
- The average number of bits used per symbol is called the rate of the code (or simply the code rate).
- If we use fewer bits to represent symbols that occur more often, on the average, we would use fewer bits per symbol. This type of code is called a variable-length code.

Coding

- Uniquely Decodable Codes

- Is it sufficient for a code to have a good code rate?
- Let's consider an example to find the answer.
- Alphabet S has four letters $a_{1}, a_{2}, a_{3}, a_{4}$ i.e., $S=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ with the following probabilities: $P\left(a_{1}\right)=\frac{1}{2}, P\left(a_{2}\right)=\frac{1}{4}, P\left(a_{3}\right)=P\left(a_{4}\right)=\frac{1}{8}$.
- Entropy of S: 1.75 bits/symbol
- Let's consider four different coding schemes for this source.

Coding

- Uniquely Decodable Codes

Letters	Probability	Code 1	Code 2	Code 3	Code 4
a_{1}	0.5	0	0	0	0
a_{2}	0.25	0	1	10	01
a_{3}	0.125	1	00	110	011
a_{4}	0.125	10	11	111	0111
Average length		1.125	1.25	1.75	1.875
$\text { Average Length }(l)=\sum_{i=1}^{4} P\left(a_{i}\right) n\left(a_{i}\right)$					

Coding

- Uniquely Decodable Codes
- Code 1:
- Same code assigned to two different letters
- ambiguous decoding.
- \Rightarrow Code should be unique
- Code 2:
- Transmitter sends: $a_{2} a_{1} a_{1}$ (100)
- At the receiver side, 100 can be decoded as: $a_{2} a_{1} a_{1}$ or $a_{2} a_{3}$
- Can be decoded in many ways
- \Rightarrow not uniquely decodable
- Code 3:
- Uniquely decodable
- Simple decoding rule:
- accumulate bits until you have a 0 or you get three consecutive 1 's.
- The decoder knows the moment a code is complete \Rightarrow Instantaneous code

Coding

- Uniquely Decodable Codes

- Code 4:
- Even simpler decoding rule:
- Accumulate bits until you see a 0 . The bit before 0 is the last bit of the previous codeword.
- The decoder has to wait till the beginning of the next codeword before it knows that the current codeword is complete.

Coding

- Example: Consider the coding scheme below. Using this code, can we decode the following message: 011111111111111111

Letter	Codeword
a_{1}	0
a_{2}	01
a_{3}	11

- Instantaneous? No
- Uniquely decodable? Yes
\Rightarrow For a code to be uniquely decodable, it is not necessary to be instantaneous!

Coding

- Unique Decodability Test

- So how can we systematically test if a code is uniquely decodable?
- To know this, let's understand a few terms first.
- Prefix: If the beginning sub-sequence of codeword b is equal to codeword a, then a is a prefix.
- Dangling Suffix: If a is a prefix of b, then the sub-sequence of b excluding the prefix a, is called a dangling suffix.

Coding

- Unique Decodability Test

- Check if any codeword is a prefix of another codeword
- If yes, add the dangling suffix to the code as a codeword.
- Repeat the procedure until:

1. You get a dangling suffix that is a codeword
2. There are no more unique dangling suffixes

- If you get (1), the code is not uniquely decodable

Coding

- Example:

- Consider Code 5
- List of codewords: $\{0,01,11\}$
- Codeword 0 is a prefix of the codeword 01.

TABLE2.2	Code 5.
Letter	Codeword
a_{1}	0
a_{2}	01
a_{3}	11

- The dangling suffix is 1 .
- No other pair for which one element of the pair is the prefix of the other.
- After augmenting the dangling suffix, the new codeword list is: $\{0,01,11,1\}$
- Codeword 0 is a prefix of codeword 01.1 is the dangling suffix which has been added as a new codeword.
- Codeword 1 is a prefix of codeword 11. Again, 1 is the dangling suffix which was not originally a codeword.
- There is no dangling suffix now. So we cannot add to the list any further.
- \Rightarrow uniquely decodable

Coding

- Example:

- Consider Code 6
- List of codeword: $\{0,01,10\}$
- Codeword 0 is a prefix of the codeword 01.

TABLE 2.3	Code 6.
Letter	Codeword
a_{1}	0
a_{2}	01
a_{3}	10

- The dangling suffix is 1 .
- No other pair for which one element of the pair is the prefix of the other.
- After augmenting the dangling suffix, the new codeword list is: $\{0,01,10,1\}$
- Codeword 0 is a prefix of codeword 01.1 is the dangling suffix which has been added as a new codeword.
- Codeword 1 is a prefix of codeword 10.0 is the dangling suffix which is already a codeword.
- There is no dangling suffix now. So we cannot add to the list any further.
- \Rightarrow not uniquely decodable

Coding

- Prefix Codes

- A code in which no codeword is a prefix of another code is called a prefix-free code (or, a prefix code)
- A code tree is a binary tree where each codeword of a code corresponds to a node in the binary tree.
- A prefix code has all codewords on leaf nodes

Code 2

Code 3

Code 4

Coding

- The Kraft-McMillan Inequality

- Two important points:
- Is there a necessary condition on the codeword lengths of uniquely decodable codes? Yes
- Can we always find a prefix code that satisfies the above necessary condition? Yes
\Rightarrow if we have a uniquely decodable code that is not a prefix code, we can always find a prefix code with the same codeword length.
- Theorem 1: Let C be a code with N codewords with lengths $l_{1}, l_{2}, \ldots, l_{N}$. If C is uniquely decodable, then

$$
K(C)=\sum_{i=1}^{N} 2^{-l_{i}} \leq 1
$$

(This inequality is known as the Kraft-McMillan inequality)

Coding

- The Kraft-McMillan Inequality

- Theorem 2: Given a set of integers $l_{1}, l_{2}, \ldots, l_{N}$ that satisfy the inequality $\sum_{i=1}^{N} 2^{-l_{i}} \leq 1$, we can always find a prefix code with codeword lengths $l_{1}, l_{2}, \ldots, l_{N}$.

