

EEE 324 Digital Signal Processing

Lecture 4

Down-sampling

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Contents

• Down-sampling

• The sampling rate of a sequence can be reduced by defining a new sequence

$$x_d[n] = x[nM] = x_c(nMT)$$
(34)

Where M is a positive integer

• The system defined by Eq. (34) is called a *compressor* and is shown below.

• $x_d[n]$ is identical to the sequence that would be obtained from $x_c(t)$ by sampling with period T' = MT

• Moreover, if $X_c(j\Omega) = 0$ for $|\Omega| \ge \Omega_N$, i.e. $x_c(t)$ is a BL signal,

• then $x_d[n]$ is an exact representation of $x_c(t)$ if $\pi/T' = \pi/MT \ge \Omega_N$.

- The sampling rate can be reduced by a factor M without aliasing using two techniques: i.e.,
 - 1. if: the original sampling rate was at least M times the Nyquist rate (i.e., $\Omega_s \ge M 2 \Omega_0$), or
 - 2. if the bandwidth of the sequence is first reduced by a factor of M by DT filtering.

Frequency Domain Relationship Between I/P and O/P of Compressor

- Since the compressor is a DT system, we will employ DTFT.
- The DTFT of $x[n] = x_c(nT)$ is:

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$
(Recall Eq. (10))

The DTFT of
$$x_d[n] = x[nM] = x_c(nT')$$
 with $T' = MT$ is:

$$\begin{bmatrix} X_d(e^{j\omega}) = \frac{1}{T'} \sum_{r=-\infty}^{\infty} X_c\left(j\left(\frac{\omega}{T'} - \frac{2\pi r}{T'}\right)\right) \end{bmatrix} \quad (35) \quad (\text{Recall Eq. (10)})$$

Putting the value of T',

$$\left|X_{d}\left(e^{j\omega}\right) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_{c}\left(j\left(\frac{\omega}{MT} - \frac{2\pi r}{MT}\right)\right)\right| \quad (36)$$

Frequency Domain Relationship Between I/P and O/P of Compressor

$$r = i + kM$$
, $-\infty < k < \infty$, $0 \le i \le M - 1$

$$\left[X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} \left[\frac{1}{T} \sum_{k=-\infty}^{\infty} X_c\left(j\left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT}\right)\right)\right]\right]$$
(3)

Frequency Domain Relationship Between I/P and O/P of Compressor

• The term inside the square brackets of Eq. (37) resemble Eq. (10) and can be written as:

$$X(e^{j(\omega-2\pi i)/M}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{(\omega-2\pi i)}{MT} - \frac{2\pi k}{T} \right) \right)$$

Hence, *Eq*. (37)*can be expressed as*:

$$X_d(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega-2\pi i)/M})$$
(38)

Frequency Domain Relationship Between I/P and O/P of Compressor

From Eq. (36), we can say that, in frequency domain, down-sampling by a factor of M can be thought of as being composed of:

- An *infinite* set of *copies* of $X_c(j\Omega)$, frequency *scaled* through $\omega = \Omega T'$ and,
- *Shifted* by integer multiples of $\frac{2\pi}{\tau'}$

Frequency Domain Relationship Between I/P and O/P of Compressor

From Eq. (38), we can say that:

- in frequency domain, down-sampling by a factor of M produces M aliased copies of the DTFT $X(e^{j\omega})$.
- These copies are produced by:
 - *Stretching* the frequency axis by a factor of M,
 - and then *shifting* by $2\pi i$.

Frequency Domain Relationship Between I/P and O/P of Compressor Either interpretation makes it clear that:

• $X_d(e^{j\omega})$ is periodic with period 2π , and

Frequency Domain Relationship Between I/P and O/P of Compressor <u>Two ways of avoiding aliasing during downsampling</u>

1. Aliasing can be avoided by ensuring that $X(e^{j\omega})$ is band-limited i.e., $X(e^{j\omega}) = 0, \qquad \omega_N \le |\omega| \le \pi$

And

$$\frac{2\pi}{M} \ge 2\omega_N$$

Or

Frequency Domain Relationship Between I/P and O/P of Compressor

Frequency Domain Relationship Between I/P and O/P of Compressor

Frequency Domain Relationship Between I/P and O/P of Compressor

<u>Two ways of avoiding aliasing during downsampling</u>

2. Reduce the bandwidth of the signal x[n] first by using an LP filter with cut-off frequency π/M and then down-sample.

For the example shown on the right, the following parameters are used:

$$\Omega_s = 4\Omega_N, M = 2$$
$$\Omega_N = \frac{1}{4}\Omega_s$$
$$\omega_N = \frac{\pi}{2}$$

Figure 4.22 (a)-(c) Downsampling with aliasing. (d)-(f) Downsampling with prefiltering to avoid aliasing.

Frequency Domain Relationship Between I/P and O/P of Compressor

• If the original signal was band-limited, such that:

$$X(e^{j\omega}) = 0, \quad \frac{\pi}{M} \le |\omega| \le \pi$$

there would be no aliasing.

- To avoid aliasing, we need to first low-pass filter, and then down-sample. $H_d(e^{j\omega}) = \begin{cases} 1, & |\omega| < \pi/M \\ 0, & \frac{\pi}{M} \le |\omega| \le \pi \end{cases}$
- In practice, due to unfavourable properties of $h_d[n]$ (infinite impulse response, slow decay), we do not apply this idealized filter.

Frequency Domain Relationship Between I/P and O/P of Compressor

• A general system for down-sampling by a factor of M is shown below.

- Such a system is called a *decimator*, and
- down-sampling by low-pass filtering followed by compression is called *decimation*.

Reading

Section 4.6.1 (Oppenheim)

Practice Problems

Problems: 4.14 – 4.18, 4.26, 4.27 (Oppenheim)

