

ECI750 Multimedia Data Compression

Lecture 4 Huffman Coding – I

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

- In this lecture, we will study
 - How can we generate Huffman codes when the probability model of the source is known?
 - Different types of Huffman codes, including
 - Minimum Variance Huffman Codes,
 - Extended Huffman Codes, and
 - Non-binary Huffman Codes

- The Huffman Coding Algorithm
 - Developed by David Huffman as part of a class assignment
 - Huffman codes are prefix codes and are optimum for a given model (set of probabilities)
 - It is based on two ideas:
 - In an optimum code, symbols that occur more frequently (have a higher probability of occurrence) will have shorter codewords than symbols that occur less frequently.
 - In an optimum code, the two symbols that occur least frequently will have the same length.

- Huffman Coding Principle:
 - Starting with two least probable symbols, γ and δ, of an alphabet A, if the codeword for γ is [m]0, the codeword for δ should be [m]1, where m is a string of 1s and 0s.
 - Now the two symbols can be combined into a group, which represents a new symbol ψ in the alphabet set.
 - The symbol ψ has the probability $P(\gamma) + P(\delta)$.
 - Recursively determine the bit pattern [m] using the new alphabet set.

• Example:

$$A = \{a_1, a_2, a_3, a_4, a_5\}$$

$$P(a_1) = P(a_3) = 0.2, P(a_2) = 0.4, P(a_4) = P(a_5) = 0.1$$

$$H = 2.122 \ bits/symbols$$

Symbol	Step 1	Step 2	Step 3	Step 4	Codeword
<i>a</i> ₂	0.4	→ 0.4 —	→ 0.4	0.6 0	1
a_1	0.2 —	→ 0.2	<u>0.4</u> ⊂ 0.4	• 0.4 1	01
<i>a</i> ₃	0.2 —	→ 0.2 ₀	0.2 1		000
a_4	0.1 _ک 0	→ 0.2 ↓ 1			0010
a_5	0.1	-			0011

- Example:
 - Average codeword length:
 - l = 0.4 * 1 + 0.2 * 2 + 0.2 * 3 + 0.1 * 4 + 0.1 * 4 = 2.2 bits/symbol
 - Redundancy = Average Codeword Length Entropy = 2.2 - 2.122
 - = 0.078 bits/symbol
 - For Huffman codes, the redundancy is zero when the probabilities are negative powers of 2.

• Minimum Variance Huffman Code

• When more than two symbols in a Huffman tree have the same probability, different merge orders produce different Huffman codes.

Symbol	Step 1	Step 2	Step 3	Step 4	Codeword
<i>a</i> ₂	0.4	→ 0.4 /	• 0.4 /	0.6 0	00
<i>a</i> ₁	0.2	• 0.2	0.4]0	0.4 1	10
<i>a</i> ₃	0.2	0 0.2	0.2^{j_1}		11
a_4	0.1 <u>0</u>	0.2] 1			010
a_5	0.1^{1}				011

The average codeword length is still 2.2 bits/symbol. But variances are different!

- We prefer a code with smaller length-variance.
- To create a minimum variance Huffman code, put the combined letter as high in the list as possible!

• Minimum Variance Huffman Code

- Why are we interested in minimum variance codes?
 - The greater the variance, the more difficult is the buffer design problem
- Consider the following:
- For both the codes considered in Slide 5 and Slide 7, the average codeword length is 2.2 bits/symbol.
- If we have to transmit 10,000 symbols/sec, we need a transmission capacity of 10,000 x 2.2 = 22,000 bits/sec.
- If we are transmitting only symbols a_4 and a_5 for a few seconds, then,
 - For the code on Slide 5: 10,000 x 4 = 40,000 bits/sec \Rightarrow 18,000 bits/sec buffering
 - For the code on Slide 7: 10,000 x 3 = 30,000 bits/sec $\Rightarrow 8,000$ bits/sec buffering

• Length of the Huffman Code

- The Huffman coding procedure generates an optimum code.
- The average codeword length \hat{l} of an optimum code (and thus the Huffman code) is bounded below by the entropy of the source (S) and bounded above by the entropy of the source plus 1 bit i.e.,

 $H(S) \le \hat{l} < H(S) + 1$

• Given a sequence of positive integers $\{l_1, l_2, \dots, l_k\}$ satisfies

There exists a uniquely decodable code whose codeword lengths are given by $\{l_1, l_2, ..., l_k\}$

 $\sum 2^{-l_i} \le 1$

• Extended Huffman Codes

• As P_{max} increases, the efficiency of Huffman coding decreases.

- Extended Huffman Codes
 - Example 1:
 - Consider a source that puts out *iid* letters from the alphabet $A = \{a_1, a_2, a_3\}$ with the probability model: $P\{a_1\} = 0.8$, $P\{a_2\} = 0.02$, $P\{a_3\} = 0.18$
 - Entropy = 0.816 bits/symbol
 - Huffman Code:

Letter	Codeword
a_1	0
a_2	11
<i>a</i> ₃	10

- Average codeword length: 1.2 bits/symbol
- Redundancy: 0.384 bits/symbol (47% of the entropy)
- \Rightarrow to code this sequence, we would need 47% more bits than the minimum required.

• Extended Huffman Codes

• Example 2:

- Average codeword length: 1.7228 bits/symbol
- Average codeword length in terms of the original alphabet: 1.7228/2 = 0.8614 bits/symbol
- Redundancy: 0.045 bits/symbol (5.5% of the entropy)
- ⇒ to code this sequence, we would need
 5.5% more bits than the minimum required.

Letter	Probability	Code
a_1a_1	0.64	0
$a_1 a_2$	0.016	10101
a_1a_3	0.144	11
a_2a_1	0.016	101000
$a_2 a_2$	0.0004	10100101
a_2a_3	0.0036	1010011
$a_{3}a_{1}$	0.1440	100
$a_{3}a_{2}$	0.0036	10100100
$a_{3}a_{3}$	0.0324	1011

• Extended Huffman Codes

- By coding blocks of symbols together, we can reduce the redundancy of Huffman codes.
- Blocking two symbols together, the alphabet size grows from m to m^2
- As we block more and more symbols together, the size of the alphabet grows exponentially, and the Huffman coding scheme becomes more impractical.
- Under these conditions, a more practical coding technique is *arithmetic coding* which we are going to see in the next week.

• Non-Binary Huffman Codes

• Huffman codes can be applied to n-ary code space. For example, codewords composed of $\{0,1,2\}$ called ternary Huffman code.

Letter	Probability	Codeword
a_1	0.20	2
a_2	0.05	021
a_3	0.20	00
a_4	0.20	01
a_5	0.25	1
a_6	0.10	020