

EEE 324 Digital Signal Processing

Lecture 7

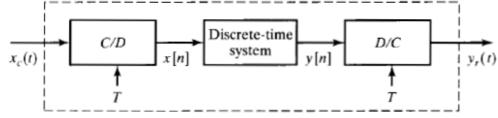
DT Processing of CT Signals

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Contents

• DT Processing of CT Signals

- DT Systems are commonly used to process CT signals.
- This is generally achieved by a system shown below.



- The overall system is equivalent to a CT system since it has a CT input $x_c(t)$ and a CT output $y_r(t)$.
- The properties of the overall system depend on the choice of the sampling rate 1/T and the DT system.
- Although not essential, we assume the same T for C/D and D/C.
- To avoid aliasing, $x_c(t)$ should be band-limited i.e., $\Omega_N \leq \frac{\Omega_s}{2}$.
 - If that is not the case, an anti-aliasing filter can be used before the \acute{C}/D converter.

Summarizing the C/D converter

• The C/D converter takes a CT input $x_c(t)$ and produces a DT signal x[n] i.e.,

$$x[n] = x_c(nT)$$

• The DTFT of the output signal is related to the CTFT of the input signal i.e.,

$$X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{T} - \frac{2\pi k}{T} \right) \right)$$
(15)

Summarizing the D/C converter

• The D/C converter takes a DT input y[n] and reconstructs a CT signal $y_r(t)$ i.e.,

$$y_r(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\sin\left[\pi\left(\frac{t-nT}{T}\right)\right]}{\frac{\pi(t-nT)}{T}}$$
(16) (Recall Eq. (13), Lecture 3)

• The CTFT of the output signal is related to the DTFT of the input signal i.e.,

$$\frac{Y_r(j\Omega) = H_r(j\Omega)Y(e^{j\Omega T})}{Y_r(j\Omega) = \begin{cases} TY(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\ 0, & otherwise \end{cases}} (17a)$$
(Recall Eq. (14), Lecture 3)

Relating the O/P sequence y[n] to the I/P sequence x[n]

- Or equivalently, $Y(e^{j\omega})$ to $X(e^{j\omega})$
- Let us consider that the DT system is LTI.
- We know that for an LTID system,

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$
(18)

The behaviour of the cascade system

• Combining Eq. (17) and Eq. (18),

$$Y_r(j\Omega) = H_r(j\Omega)H(e^{j\Omega T})X(e^{j\Omega T})$$
(19)

• Also using Eq. (15) with $\omega = \Omega T$,

$$Y_r(j\Omega) = H_r(j\Omega)H\left(e^{j\Omega T}\right)\frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left(j\left(\Omega - \frac{2\pi k}{T}\right)\right)\right|$$
(20)

• If $X_c(j\Omega) = 0$ for $|\Omega| \ge \frac{\pi}{T}$, then the ideal reconstruction filter $H_r(j\Omega)$ cancels the factor $\frac{1}{T}$ and selects only the term in Eq. (20) for k = 0; i.e., $\begin{bmatrix}
Y_r(j\Omega) = \begin{cases} H(e^{j\Omega T})X_c(j\Omega), & |\Omega| < \frac{\pi}{T} \\ 0, & otherwise \end{cases}$ (21)

The behaviour of the cascade system

• If $X_c(j\Omega)$ is band-limited and the sampling rate is above the Nyquist rate, the output is related to the input through an equation of the form

$$Y_r(j\Omega) = H_{eff}(j\Omega)X_c(j\Omega)$$
(22)

Here,

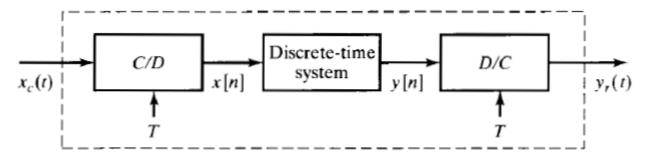
$$H_{eff}(j\Omega) = \begin{cases} H(e^{j\Omega T}), & |\Omega| < \frac{\pi}{T} \\ 0, & otherwise \end{cases}$$
(23)

• So the overall CT system is equivalent to an LTIC system whose effective frequency response is given in Eq. (23).

The behaviour of the cascade system

Example 4.4 (Ideal CT LP Filtering using a DT LP Filter)

Consider the following cascade system.

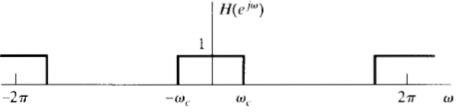


Let the LTI DT System have the frequency response $H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$

The behaviour of the cascade system

Example 4.4 (Ideal CT LP Filtering using a DT LP Filter)

• As it is a DT system, the FR is periodic with period 2π



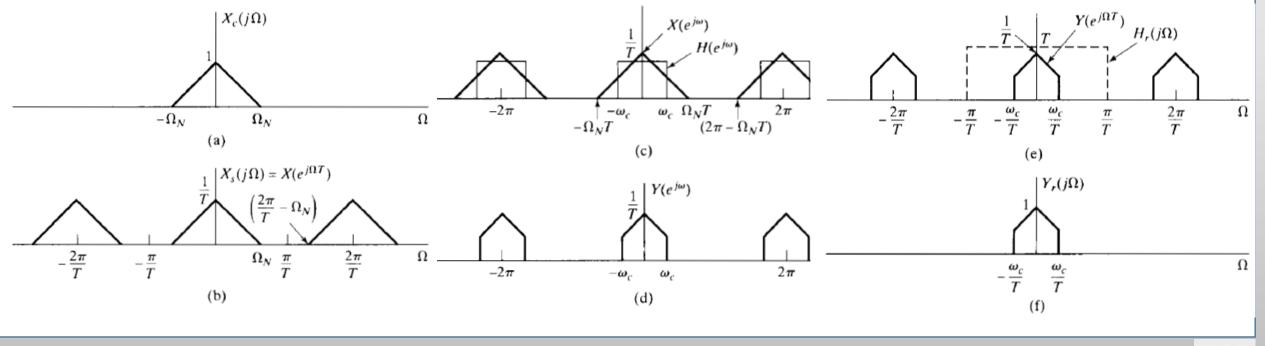
• For a BL I/P sampled above the Nyquist rate, according to Eq. (23), the overall system will behave as an LTI CT system with FR

$$H_{eff}(j\Omega) = \begin{cases} 1, & |\Omega T| < \omega_c \text{ or } |\Omega| < \frac{\omega_c}{T} \\ 0, & \omega_c < |\Omega T| \text{ or } \frac{\omega_c}{T} < |\Omega| \\ & -\frac{\omega_c}{T} - \frac{\omega_c}{T} & 0 \\ & -\frac{\omega_c}{T} & 0 \\ & -\frac{\omega_c}{T} & 0 \\ & -\frac{\omega_c}{T}$$

COMSATS

The behaviour of the cascade system

Example 4.4 (Ideal CT LP Filtering using a DT LP Filter)



The behaviour of the cascade system

Example 4.4 (Ideal CT LP Filtering using a DT LP Filter)

- The Ideal DT LPF with DT cut-off freq. ω_c has the effect of an ideal LPF with cut-off freq. $\Omega_c = \frac{\omega_c}{T}$ when used in the cascade configuration used in this lecture.
- This cut-off freq. depends both on ω_c and T.
- By using a fixed DT LPF, but varying the sampling period *T*, an equivalent CT LPF with a variable cut-off freq. can be implemented.
- E.g., if *T* is chosen such that $\Omega_N T < \omega_c$, then the O/P would be $y_r(t) = x_c(t)$

The behaviour of the cascade system

Example 4.4 (Ideal CT LP Filtering using a DT LP Filter)

• To avoid aliasing, it is required that: $(2\pi - \Omega_N T) > \omega_c$

The behaviour of the cascade system

Example 4.5 (DT Implementation of an Ideal CT BL Differentiator)

The ideal CT differentiator is defined by

$$y_c(t) = \frac{d}{dt} [x_c(t)]$$

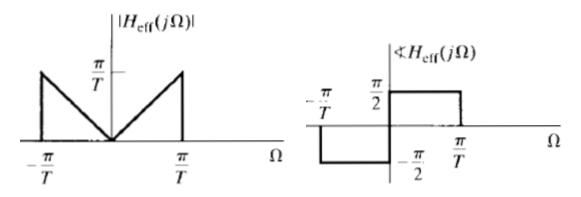
with FR

$$H_c(j\Omega) = j\Omega$$

For the CT cascade system with BL input, the effective FR $H_{eff}(j\Omega)$ is $H_{eff}(j\Omega) = \begin{cases} j\Omega, & |\Omega| < \frac{\pi}{T} \\ 0, & otherwise \end{cases}$

The behaviour of the cascade system

Example 4.5 (DT Implementation of an Ideal CT BL Differentiator)



The behaviour of the cascade system

Example 4.5 (DT Implementation of an Ideal CT BL Differentiator)

To obtain the corresponding DT system, use $\omega = \Omega T$. So,

$$H(e^{j\omega}) = \frac{j\omega}{T}, \qquad |\omega| < \pi$$



The behaviour of the cascade system

Example 4.5 (DT Implementation of an Ideal CT BL Differentiator)

The IR of the DT system is

$$h[n] = \frac{\pi n cos \pi n - sin \pi n}{\pi n^2 T}, \quad -\infty < n < \infty$$
Or
$$h[n] = \begin{cases} 0, & n = 0\\ \frac{cos \pi n}{nT}, & n \neq 0 \end{cases}$$

<u>The behaviour of the cascade system</u> <u>Example 4.6 (Illustration of Ex. 4.5 with Sinusoidal I/P)</u> Let the I/P in Ex. 4.5 be

$$x_c(t) = \cos(\Omega_0 t)$$
 with $\Omega_0 < \frac{\pi}{T}$
 $x[n] = \cos(\omega_0 n)$, $\omega_0 = \Omega_0 T < \pi$
DTFT in terms of Ω ,

$$X(e^{j\Omega T}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} [\pi \delta(\Omega - \Omega_0 - k\Omega_s) + \pi \delta(\Omega + \Omega_0 - k\Omega_s)]$$

The behaviour of the cascade system **Example 4.6 (Illustration of Ex. 4.5 with Sinusoidal I/P)** When we focus on the baseband freqs. $-\frac{\pi}{\tau} < \Omega < \frac{\pi}{\tau}$, we obtain $X(e^{j\Omega T}) = \frac{\pi}{\tau} \delta(\Omega - \Omega_0) + \frac{\pi}{\tau} \delta(\Omega + \Omega_0), \text{ for } |\Omega| \le \frac{\pi}{\tau}$ In terms of ω , using the property $\delta\left(\frac{\omega}{\tau}\right) = T\delta(\omega)$, $X(e^{j\omega}) = \pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0), \text{ for } |\omega| \le \pi$

The behaviour of the cascade system

Example 4.6 (Illustration of Ex. 4.5 with Sinusoidal I/P)

The DTFT of the output of the DT system is $Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$ $Y(e^{j\omega}) = \frac{j\omega}{T} [\pi\delta(\omega - \omega_0) + \pi\delta(\omega + \omega_0)]$ $Y(e^{j\omega}) = \frac{j\pi\omega_0}{T}\delta(\omega - \omega_0) - \frac{j\pi\omega_0}{T}\delta(\omega + \omega_0), \quad |\omega| \le \pi$

The behaviour of the cascade system

Example 4.6 (Illustration of Ex. 4.5 with Sinusoidal I/P)

The CTFT of the output of the overall CT cascade System, for
$$|\Omega| \leq \frac{\pi}{T}$$

 $Y_r(j\Omega) = H_r(j\Omega)Y(e^{j\Omega T}) = TY(e^{j\Omega T})$
 $= T\left[\frac{j\pi\omega_0}{T}\delta(\Omega T - \Omega_0 T) - \frac{j\pi\omega_0}{T}\delta(\Omega T + \Omega_0 T)\right]$
 $= T\left[\frac{j\pi\omega_0}{T}\left(\frac{1}{T}\right)\delta(\Omega - \Omega_0) - \frac{j\pi\omega_0}{T}\left(\frac{1}{T}\right)\delta(\Omega + \Omega_0)\right]$
 $= j\Omega_0\pi\delta(\Omega - \Omega_0) - j\Omega_0\pi\delta(\Omega + \Omega_0)$

And the Inverse CTFT is

$$y_r(t) = j\Omega_0\left(\frac{1}{2}\right)e^{j\Omega_0 t} - j\Omega_0\left(\frac{1}{2}\right)e^{-j\Omega_0 t} = -\Omega_0\sin(\Omega_0 t)$$

Which is the derivative of the input.

(24)

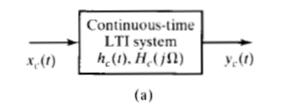
(25)

Impulse Invariance

- Suppose we have a system as shown to right.
- Let us demand that,

$$H(e^{j\omega}) = H_c\left(\frac{j\omega}{T}\right), \ |\omega| < \pi$$

$$H_c(j\Omega) = 0, \ |\Omega| \ge \frac{\pi}{T}$$



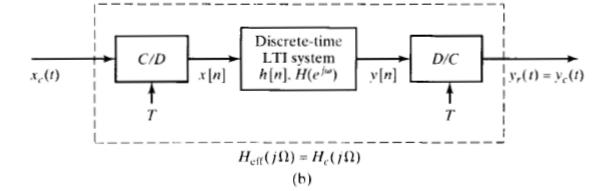


Figure 4.15 (a) Continuous-time LTI system. (b) Equivalent system for bandlimited inputs.

Impulse Invariance

• When Eq. (24) and Eq. (25) hold,

$$\begin{split} h[n] &= Th_c(nT) \quad (26) \\ H(e^{j\omega}) &= H_c\left(\frac{j\omega}{T}\right), \quad |\omega| \leq \pi \quad (26a) \end{split}$$

- The above equations hold for band-limited signals.
- Hence, the impulse response of the DT system is a scaled, sampled, version of $h_c(t)$.
- When Eq. (26) holds, the DT system is said to be the *impulse invariant* version of the CT system.

Impulse Invariance

Example 4.7 (DT LPF obtained using Impulse Invariance) Given:

FR of a CT System:
$$H_c(j\Omega) = \begin{cases} 1, & |\Omega| < \Omega_c \\ 0, & otherwise \end{cases}$$

IR: $h_c(t) = \frac{\sin(\Omega_0 t)}{\pi t}$

Find:

IR of a DT System:
$$h[n]$$

 $h[n] = Th_c(nT) = T \frac{\sin(\Omega_0 nT)}{\pi nT} = \frac{\sin(\omega_0 n)}{\pi n}$
FR: $H(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| < \pi \end{cases}$

Impulse Invariance

Example 4.8 (Impulse Invariance Applied to CT Systems with Rational TFs)

Given:

IR:
$$h_c(t) = Ae^{s_0 t}u(t)$$

SF: $H_c(s) = \frac{A}{s-s_0}$

To Do: Apply Impulse Invariance

The form
$$h[n] = Th_c(nT) = Ae^{s_0Tn}u[n]$$

TF:
 $H(z) = \frac{AT}{1 - e^{s_0T}z^{-1}}$
FR:
 $H(e^{j\omega}) = \frac{AT}{1 - e^{s_0T}e^{-j\omega}}$

Impulse Invariance

Example 4.8 (Impulse Invariance Applied to CT Systems with Rational TFs)

- Here Eq. (26a) does not hold exactly, as the original CT system did not have a strictly BL FR.
- Hence, resulting DT FR is an aliased version of $H_c(j\Omega)$.
- The effect of aliasing may be small.
- Hence, one approach to the DT simulation of CT system and to the design of Digital filters is through sampling of the IR of a corresponding analog filter.

Practice Problems

Problems: 4.5, 4.6, 4.12, 4.13, 4.19 – 4.28 (Oppenheim)

