

ECI750 Multimedia Data Compression

Lecture 8 *Practice Problems*

Dr. Shadan Khattak Department of Electrical Engineering COMSATS Institute of Information Technology - Abbottabad

Dr. Shadan Khattak Department of Electrical Engineering CIIT - Abbottabad

28/09/2015

• Given an alphabet $A = \{a_1, a_2, a_3, a_4\}$, find the entropy in the following cases:

1.
$$P(a_1) = P(a_2) = P(a_3) = P(a_4) = \frac{1}{4}$$

2. $P(a_1) = \frac{1}{2}, P(a_2) = \frac{1}{4}, P(a_3) = P(a_4) = \frac{1}{8}$
3. $P(a_1) = 0.505, P(a_2) = \frac{1}{4}, P(a_3) = \frac{1}{8}, P(a_4) = 0.12$

Answers:

1. $H(X) = 2 \ bits$ 2. $H(X) = 1.75 \ bits$ 3. $H(X) \approx 1.739 \ bits$

- Determine whether the following codes are uniquely decodable:
 - 1. $\{0, 01, 11, 111\}$
 - 2. $\{0, 01, 110, 111\}$
 - *3.* {0, 10, 110, 111}
 - *4.* {1, 10, 110, 111}

Answers:

- 1. Not uniquely decodable
- 2. Not uniquely decodable
- 3. Uniquely decodable
- 4. Not uniquely decodable

- A source emits letters from an alphabet $A = \{a_1, a_2, a_3, a_4, a_5\}$ with probabilities $P(a_1) = 0.15$, $P(a_2) = 0.04$, $P(a_3) = 0.26$, $P(a_4) = 0.05$, and $P(a_5) = 0.50$.
 - a) Calculate the entropy of this source.
 - b) Find a Huffman code for this source.
 - c) Find the average length of the code in (b) and its redundancy.

- For an alphabet $A = \{a_1, a_2, a_3, a_4\}$ with probabilities $P(a_1) = 0.1, P(a_2) = 0.3, P(a_3) = 0.25$, and $P(a_4) = 0.35$, find a Huffman code
 - a) Using the conventional method
 - b) Using the minimum variance procedure

Comment on the difference in the Huffman codes.